In the Matter of:
THE APPLICATION OF KENTUCKY UTILITIES COMPANY FOR CERTIFICATES OF PUBLIC CONVENIENCE AND
NECESSITY AND APPROVAL OF ITS 2011 COMPLIANCE)2011-00161 PLAN FOR RECOVERY BY ENVIRONMENTAL SURCHARGE)

In the Matter of:
THE APPLICATION OF LOUISVILLE GAS AND ELECTRIC COMPANY FOR CERTIFICATES OF PUBLIC CONVENIENCE) CASE NO. AND NECESSITY AND APPROVAL OF ITS 2011 COMPLIANCE) 2011-00162 PLAN FOR RECOVERY BY ENVIRONMENTAL SURCHARGE)

One Paper Copy of
Sinclair - Appendix B and Schram - Appendix A Filed - October 24, 2011

Sinclair - Appendix B and Schram-Apeendix A

2011-00161

$$
2011-00162
$$

RECEDED
$0 C 7842011$
public service COMMISSION

Natural Gas Supply, Disposition, and Prices, Reference case
(trillion cubic feet, unless otherwise noted)

Natural Gas Supply, Disposition, and Prices, AEO2010 Reference case
(trillion cubic feet, unless otherwise noted)

Supply, Disposition, and Prices	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035 G	Growth Rate (2009-2035)
Production																													
Dry Gas Production 1/	20.56	20.6	20.01	19.46	19.28	18.9	18.91	19.29	19.3	19.42	19.59	19.79	19.98	19.92	20.1	20.53	21.17	21.31	21.65	21.85	22.09	22.26	22.38	22.53	22.71	22.96	23.18	23.27	0.50\%
Supplemental Natural Gas 2	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.40\%
Net Imports	2.95	2.76	2.82	2.78	2.62	2.36	2.32	2.38	2.48	2.57	2.58	2.59	2.57	2.58	2.53	2.34	2.22	2.17	2.1	2.05	2	1.91	1.84	1.79	1.73	1.62	1.53	1.46	-2.40\%
Pipeline $3 /$	2.65	2.34	2.21	2.08	1.81	1.48	1.34	1.29	1.25	1.19	1.14	1.11	1.07	1.07	1.05	0.93	0.88	0.89	0.89	0.92	0.94	0.94	0.94	0.95	0.92	0.83	0.74	0.64	-4.90\%
Liquefied Natural Gas	0.3	0.42	0.61	0.7	0.82	0.87	0.97	1.09	1.23	1.38	1.45	1.48	1.5	1.51	1.48	1.41	1.34	1.28	1.21	1.14	1.07	0.98	0.89	0.84	0.81	0.79	0.8	0.83	2.70\%
Total Supply	23.57	23.42	22.88	22.3	21.97	21.32	21.29	21.73	21.85	22.05	22.24	22.44	22.61	22.56	22.69	22.94	23.46	23.54	23.82	23.98	24.16	24.24	24.28	24.38	24.5	24.64	24.78	24.8	0.20\%
Consumption by Sector																													
Residential	4.87	4.77	4.81	4.66	4.66	4.67	4.69	4.71	4.74	4.75	4.77	4.79	4.83	4.83	4.84	4.85	4.89	4.89	4.91	4.91	4.92	4.9	4.89	4.89	4.9	4.88	4.88	4.87	0.10\%
Commercial	3.12	3.07	3.2	3.18	3.19	3.18	3.21	3.23	3.25	3.27	3.29	3.32	3.33	3.35	3.37	3.39	3.42	3.45	3.48	3.5	3.52	3.54	3.55	3.57	3.59	3.62	3.65	3.69	0.70\%
Industrial $4 /$	6.65	5.95	6.05	6.22	6.52	6.73	6.86	6.88	6.91	6.93	6.98	7.01	7.03	7.01	6.98	6.95	6.96	6.94	6.88	6.86	6.81	6.78	6.74	6.74	6.72	6.72	6.72	6.72	0.50\%
Natural Gas-to-Liquids Heat and Power 5l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O..	
Natural Gas to Liquids Production 61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
Electric Power $7 /$	6.66	6.86	6.55	6.11	5.68	5.04	4.82	5.18	5.23	5.38	5.46	5.56	5.66	5.6	5.71	5.89	6.23	6.28	6.57	6.7	6.88	6.99	7.04	7.13	7.23	7.34	7.43	7.42	0.30\%
Transportation $8 /$	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.09	0.1	0.11	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.18	0.18	0.19	6.10\%
Pipeline Fuel	0.63	0.61	0.62	0.6	0.6	0.58	0.59	0.6	0.6	0.6	0.61	0.61	0.62	0.61	0.62	0.65	0.69	0.7	0.7	0.71	0.71	0.71	0.72	0.72	0.72	0.72	0.72	0.72	0.60\%
Lease and Plant Fuel $9 /$	1.28	1.29	1.25	1.18	1.13	1.07	1.07	1.08	1.07	1.07	1.08	1.09	1.09	1.09	1.1	1.14	1.19	1.19	1.21	1.22	1.22	1.23	1.23	1.23	1.24	1.24	1.26	1.25	-0.10\%
Total	23.25	22.59	22.51	21.99	21.82	21.32	21.29	21.74	21.86	22.07	22.25	22.45	22.63	22.58	22.71	22.96	23.49	23.57	23.85	24.02	24.2	24.29	24.33	24.43	24.56	24.7	24.84	24.85	0.40\%
Discrepancy 10/	0.32	0.83	0.37	0.31	0.15	0	0	-0.01	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03	-0.04	-0.04	-0.04	-0.05	-0.05	-0.05	-0.06	-0.06	-0.06	-0.07--	
Natural Gas Prices																													
(2009 dollars per million Btu)																													
Henry Hub Spot Price	8.99	3.54	4.57	5.77	6.27	6.22	6.18	6.37	6.47	6.48	6.53	6.61	6.74	6.84	7.03	7.06	7.02	7.1	7.26	7.4	7.64	7.89	8.17	8.52	8.63	8.66	8.88	9.01	3.70\%
Average Lower 48 Wellhead Price 11/	7.97	3.29	4	5.1	5.54	5.5	5.46	5.63	5.72	5.73	5.77	5.84	5.96	6.05	6.22	6.24	6.2	6.27	6.41	6.54	6.75	6.97	7.22	7.52	7.62	7.65	7.85	7.96	3.50\%
[2009 dollars per thousand cubic feet]																													
Average Lower 48 Wellhead Price 11/	8.19	3.38	4.11	5.24	5.69	5.65	5.61	5.78	5.88	5.89	5.93	6	6.12	6.22	6.39	6.42	6.38	6.45	6.59	6.72	6.94	7.17	7.42	7.73	7.83	7.86	8.06	8.19	3.50\%
Delivered Prices																													
Residential	14.08	11.9	11.38	12.3	12.4	11.99	11.92	12.07	12.17	12.21	12.28	12.36	12.49	12.61	12.81	12.84	12.74	12.84	13.02	13.22	13.48	13.75	14.04	14.39	14.55	14.66	14.88	15.04	0.90\%
Commercial	12.48	9.45	9.06	10.16	10.52	10.36	10.29	10.44	10.54	10.56	10.62	10.69	10.82	10.93	11.12	11.16	11.1	11.18	11.35	11.53	11.79	12.03	1231	12.65	12.8	12.87	13.08	13.22	1.30\%
Industrial ${ }^{\text {/ }}$	9.52	4.33	5.09	6.24	6.68	6.62	6.56	6.73	6.81	6.8	6.84	6.89	7	7.09	7.28	7.33	7.28	7.33	7.47	7.61	7.85	8.07	8.34	8.66	8.77	8.79	9	9.12	2.90\%
Electric Power 71	9.48	4.31	5.05	6.07	6.43	6.19	6.15	6.34	6.43	6.44	6.48	6.55	6.69	6.79	6.98	7.03	6.98	7.04	7.2	7.35	7.58	7.83	8.06	8.37	8.48	8.52	8.71	8.82	2.80\%
Transportation 12/	16.67	11.87	12.53	13.67	14.09	13.96	13.85	13.97	14.01	13.98	13.97	13.98	14.04	14.07	14.18	14.15	14	14.03	14.14	14.26	14.44	14.62	14.83	15.1	15.19	15.19	15.35	15.44	1.00\%
Average 13/	10.99	6.86	7.17	8.21	8.56	8.4	8.37	8.5	8.58	8.58	8.63	8.69	8.81	8.93	9.11	9.15	9.06	9.13	9.28	9.43	9.67	9.91	10.17	10.49	10.62	10.66	10.86	11	1.80\%
(nominal dollars per million 8 Etu)																													
Henry Hub Spot Price	8.86	3.54	4.64	5.93	6.53	6.6	6.67	6.99	7.23	7.38	7.57	7.8	8.11	8.41	8.84	9.06	9.2	9.49	9.91	10.31	10.88	11.48	12.15	12.94	13.4	13.74	14.4	14.92	5.70\%
Average Lower 48 Wellhead Price 11/	7.85	3.29	4.06	5.24	5.77	5.83	5.89	6.17	6.39	6.52	6.69	6.89	7.17	7.43	7.81	8.01	8.13	8.38	8.75	9.11	9.61	10.14	10.73	11.43	11.84	12.14	12.72	13.18	5.50\%
(nominal dollars per thousand cubic feet) Average Lower 48 Wellhead Price 11/	8.07	3.38	4.17	5.39	5.94	6	6.06	6.35	6.57	6.7	6.88	7.08	7.37	7.64	8.03	8.23	8.35	8.62	9	9.37	9.88	10.43	11.03	11.75	12.17	12.48	13.07	13.55	5.50\%
Dellvered Prices																													
Residential	13.87	11.9	11.54	12.65	12.93	12.72	12.87	13.25	13.6	13.9	14.24	14.59	15.03	15.5	16.09	16.47	16.69	17.16	17.76	18.42	19.19	20	20.88	21.87	22.61	23.26	24.12	24.9	2.90\%
Commercial	12.29	9.45	9.19	10.44	10.96	10.99	11.11	11.46	11.77	12.01	12.31	12.62	13.02	13.43	13.97	14.33	14.54	14.95	15.49	16.07	16.78	17.5	18.3	19.23	19.9	20.43	21.21	21.89	3.30\%
Industrial 4/	9.38	4.39	5.17	6.41	6.96	7.02	7.09	7.39	7.6	7.74	7.93	8.14	8.43	8.71	9.14	9.4	9.53	9.8	10.19	10.61	11.17	11.74	12.39	13.16	13.63	13.96	14.58	15.1	4.90\%
Electric Power 71	9.34	4.31	5.13	6.24	6.71	6.57	6.64	6.96	7.18	7.32	7.52	7.74	8.06	8.35	8.77	9.02	9.15	9.41	9.83	10.24	10.8	11.39	11.98	12.72	13.18	13.52	14.12	14.61	4.80\%
Transportation 12/	16.42	11.87	12.72	14.06	14.69	14.81	14.95	15.33	15.65	15.9	16.19	16.5	16.9	17.29	17.82	18.16	18.35	18.76	19.3	19.87	20.56	27.27	22.04	22.95	23.6	24.12	24.89	25.56	3.00\%
Average 13/	10.83	6.86	7.28	8.44	8.92	8.92	9.03	9.33	9.59	9.77	10	10.26	10.61	10.97	11.45	11.74	11.87	12.21	12.66	13.15	13.76	14.41	15.11	15.94	16.5	16.92	17.6	18,2	3.80\%

[^0]business is to sell electricity, or
8/Compressed natural gas used as vehicle fuel.
9/ Represents natural gas used in well, field, and lease operations, and in natural gas processing plant machinery.
$10 /$ Balancing item. Natural gas lost as a result of converting flow date measured at varying temperatures and
pressures to a standard temperature and pressure and the merger of different data reporting systems which
vary in scope, format, definition, and respondent type. In addition, 2008 and 2009 values
11/ Represents lower 48 onshore and offshore supplies.
$12 /$ Compressed natural gas used as a vehicle fuel. Price includes estimated motor vehicle fuel taxes
and estimated dispensing costs or charges.
-- = Not applicable.
Note: Totais may not equal sum of components due to independent rounding. Data for 2008 and 2009
are model results and may differ slightiy from official EIA data reports.
Sources: 2008 supply values; and lease, plant, and pipeline fuel con
Sources: 2008 supply values; and lease, plant, and pipeline fuel consumption: Energy
Information Administration (EIA), Natural Gas Annual 2008, DOE/EA-0131(2008) (Washington, DC. March 2010).
2009 supply values; and lease, plant, and pipeline fuel consumption; and wellhead price: EIA,
Natural Gas Monthly, DOEFEIA-0130(2010/07) (Washington, DC. July 2010).
Natural Gas Monthly, DOEFEIA-0130(2010/O7) (Washington, DC. July 2010].
Other 2008 and 2009 consumption based on: ElA,
Annual Energy Review 2009, DOEJEIA-0384(2009) (Washington, DC. August 2010).
2008 wellhead price: Bureau of Energy Management, Regulation and Enforcement; and EIA, Natural Gas Annual
2008 wellhead price: Bureau of Energy Management, Regulation
2008 , DOE/EIA-0131 (2008) (Washington, DC, March 2010).
2008 residential and commercial delivered prices: ElA, Natural Gas Annual
2008, DOE/EIA-013 $\ddagger(2008)$ (WashIngton, DC, March 2010).
2009 residential and commercial delivered prices: EIA, Natural Gas Monthly, DOE/EIA-0130
Electric Power Monthly, DOE/EIA-0226, April 2009 and April 2010, Table 4.13.B. 2008 and 2009
industrial dellvered prices are estimated based on: EIA, Manufacturing Energy Consumption Survey and industrial
and wellhead prices from the Natural Gas Annual 2008, DOE/EIA-0131(2008) (Washington, DC. March 20t0)
and the Natural Gas Monthly, DOE/EIA-0130(2010/O7) (Washington, DC, Juty 2010). 2008 transportation sector
(Washington, DC, March 2010) delivered prices are based on: EIA, Natural Gas Annual 2008, DOE/EIA-013
and estimated state taxes, federal taxes, and dispensing costs or charges.
2009 transportation sector delivered prices are model results.
\[

$$
\begin{aligned}
& 2009 \text { transportation sector delivered prices are model results. } \\
& \text { Projections: EIA, AEO2011 National Energy Modeling System. }
\end{aligned}
$$
\]


```
安
```



```
O
```



```
⿳亠丷厂小
```



```
娄
```


๗
 臭

バざさ
 3

REDACTED DSS- FIGURE 1 - Synapse Gas Prices and Comparisons (Supplemental) PUBLIC.xlsx
$\stackrel{\ddot{\omega}}{\stackrel{\rightharpoonup}{\omega}}$
 0

Navigant- Appendix D: Henry Hub Price Forecast Comparison Table (2009\$) Market Analysis for Sabine Pass LNG Export Project

 ละ

枈喜		
$\stackrel{\square}{5}$		

0.898279
0.882775
0.906954
0.911639
0.913106
0.915036
0.903108
0.903959
0.904752
0.905495
0.906185
0.906897
0.907634
0.908312
0.908938
0.90957

EIA His ${ }^{+\cdots}$. Prices
(

					-	O	-	\%	\% ${ }_{\text {¢ }}$	\bigcirc	$\stackrel{\square}{\circ}$	${ }^{\circ}$	O-	0^{8}		-							
				\%	(1)	${ }^{0}$	\%	¢	${ }_{\infty}^{\infty}$	N	8	8	¢	$\stackrel{+}{+}$									
			\sum_{i}^{3}		${ }_{4}^{4}$	O	No	\bigcirc	¢	$\stackrel{0}{\sim}$	$\stackrel{\sim}{\sim}$	o		-									
			O.					\%	-	-	웅	-		-									

Note: The values above reflect the correction of the landfill cost error identified by Dr. Fisher and the error identified by the Companies' in response to Supplemental Requests for Information of Rick Clewett, Raymond Barry, Sierra Club and the Natural Resource Defense Council dated August 18, 2011, Question No. 8(b).
Coal Units in Portfolio

| 6,000 |
| :--- | :--- |

	Nod					検		충	
	匈		$\begin{aligned} & \text { mo } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { ni } \\ & \text { H } \\ & \text { did } \\ & \text { on } \end{aligned}$	敬			
	N					䬬			
	츆					敬	和	敬	
	へ్ల్ర］			$\begin{aligned} & \stackrel{0}{0} 0_{0}^{0} \\ & \underset{\sim}{7} \\ & \underset{\sim}{0} \end{aligned}$		利俞~~~	品品号筞	带	
	त्へ్ర						츙	$\underset{\sim}{\mid r}$	
	류에		$\begin{aligned} & \stackrel{\circ}{9} \\ & \stackrel{y y y y}{c} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { 융 合 } \\ & \stackrel{y}{\omega} \\ & \stackrel{N}{N} \end{aligned}$		멧	팽NN	苐	
	맷	 min minn	$\begin{aligned} & \text { 哭合 } \\ & \text { © } \end{aligned}$			훙웅	$\text { 융 }{ }^{\text {mion }}$	${\underset{\sim}{0}}^{\circ}$	
	휶	 $m \sim N m N N$			$\begin{aligned} & \infty 0_{1}^{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	융	$\text { 别 }{ }^{\infty}$	$\text { 형 }^{8}{ }^{\circ}$	
	ㅁㅡㅔ					$\stackrel{\sim}{0}^{\infty}$	$\text { 뭄 }{ }^{\circ}$	${\underset{n}{n}}^{9+9}$	
	칯		$\begin{aligned} & \text { Ñ } \\ & \stackrel{\sim}{\tilde{W}} \\ & \underset{\sim}{n} \end{aligned}$			命\|	त्तٍ	\ddot{n}°	
	등	 	$\begin{aligned} & \text { Nog } \\ & \text { 导 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 皆 } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \text { 导 } \\ & \text { 守 } \\ & \text { 保 } \end{aligned}$	枵合		뷲 꾺 무국	
	$\stackrel{\oplus}{c}$					芦芦\|	的	$\stackrel{\sim}{n} \underset{\sim}{\sim}$	
	枵		䇧号尔	$\begin{aligned} & \text { mo } \\ & \text { 悥 } \\ & \text { Non } \end{aligned}$		헴	节\|	험	
	$\stackrel{\sim}{\sim}$		$\begin{aligned} & \text { N } \\ & \text { N N } \\ & \text { Non } \\ & \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \text { Nin } \\ & \text { nin } \end{aligned}$		${\underset{\sim}{p}}^{\stackrel{n}{m} \underset{\sim}{n}}$	芲品品员		
		多名然NN 			$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{4} \end{aligned}$		륭	$\stackrel{\text { 팰 }}{\stackrel{m}{7}}$	이숭문
			咢吅	永品		${ }^{\circ}{ }^{000}$	总\|	${ }^{000}$	
		的	$\stackrel{\infty}{\underset{\sim}{N}}$	$\ddot{7}$	$\xrightarrow[\sim]{\sim}$				

10／18／2011

＊All cases use AESC Gas Prices in Nominal \＄

No CO 2
Delta
Cumulative Delta
Low CO 2
Delta Curnulative Delta
Mid CO2 Cumulative Delta
Annual Nominal RR Delta $\$ \mathrm{M}$
No $\mathrm{CO2}$
Low $\mathrm{CO2}$
Mid $\mathrm{CO2}$ Cumulative Nominal RR Delta $\$ \mathrm{M}$
No CO2
Low CO2

Annual PVRR Delta（\＄M） No CO2 Low CO2 Mid CO2

[^1]융

흉 운

酋

$\overbrace{0}^{\circ}$
0
0
0
0
0
0

品管

㖥岡 옴器
 の人のが

愛品咍啻 $\stackrel{\circ}{\circ} \stackrel{\circ}{7}$

$\stackrel{y}{\mathrm{M}}$

荡

器荌

웅
墖会
웅
号風总

等荡

형훌
흉웅

퓽
品豆

㗱葉

眔

無守
器商翤荌

239,643
$2,131,947$
哭哭
品志

品品
颜熍茄品

223.561
$1.892,304$

趷等

 $\stackrel{8}{\circ}$

器品等㣌荡 뭉웅 임

$\stackrel{0}{\circ} \mathrm{C}$
훙
응
B
0

路 형

183，991
1．250．444
55,303
493,714
解
 웅 $\underset{\sim}{\text { 品 }} \underset{\sim}{\text { 士 }}$ 영웅

10／18／2011
＊All cases use AESC Gas Prices in Nominal \＄
$\begin{array}{ll}\text { Retire：} & \text { CO2 Prices：} \\ \text { TY3，GR3－4，CR4－5，BR1－2，and MC1－2 } & \text { Mid } \\ \text { TY3，GR3－4，CR4－6．BR1－2，and MC1－2 } & \text { Low }\end{array}$
$\begin{array}{ll}\text { TY3，GR3－4，CR4－6，BR1－2，and MC1－2 } & \text { Mid } \\ \text { TY3，GR3－4，CR4－6．BR1－2，and MC1－2 } & \text { Low }\end{array}$ $\begin{array}{ll}\text { TY3，GR3－4，CR4－6，BR1－2，and MC1－2 } & \text { None } \\ \text { TY3，GR3－4，and CR4－6 } & \text { Mid } \\ \text { TY3，GR3－4，and CR4－6 } & \text { Low } \\ \text { TY3，GR3－4，and CR4－6 } & \text { None }\end{array}$

No CO2
Delta
Cumulative Delta
Low CO2
Cumulative Delta
Mid CO2
Delta

Annual Nominal RR Delta $\$ \mathrm{~S} M$ No CO 2

Cumulative
No CO2
Low CO2
Mid CO2
Annual PVRR Deita（\＄M）
敋等膏
PVRR Delta Through Future Years（2011 \＄M）

Retire TY3, GR3-4, CR4-6, BR1-2, and MC1-2			Retire TY3, GR3-4, and CR4-6		
No CO2	Low CO2	Mid CO2	No CO2	Low CO2	Mid CO2
$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$
			$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$
$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$			
			$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$
$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$			
2×1C(1)	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$	2x1C(1)	$3 \times 1 \mathrm{C}$ (1)	$3 \times 1 \mathrm{C}(1)$
$3 \times 1 \mathrm{C}(1)$			$3 \times 1 \mathrm{C}(1)$		
	$3 \times 1 \mathrm{C}(1)$	SCCT (1)			

$3 \times 1 C=3 \times 1$ Combined Cycle Combustion Turbine $2 \times 1 \mathrm{C}=2 \times 1$ Combined Cycle Combustion Turbine

SCCT = Simple Cycle Combustion Turbine

CO2 Emissions Allowance Price Forecast

2\% Inflation Rate
17.57
21.42
25.39
29.53
33.82
38.26
42.88
47.67
52.62
57.76
63.09
68.59
74.30
80.21
86.33
92.66
99.21
105.98
112.99
120.23
127.72
135.46
143.46

Synapse's CO_{2} Price Forecasts

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	No Retirements	Retire:	TY GR3	TYGR3BR3	TY GR3 CR4	$\frac{\text { TY GR3 CR4 }}{\text { CR6 }}$	$\frac{\text { TY GR3 } C R 4}{}$	TYGR3CR	$\frac{\text { TYGR3CR }}{\text { GH3 }}$	$\frac{T Y G R 3 C R}{\underline{G H 1}}$	TY GRCR	$\frac{T Y G R C R}{M C 4}$	$\frac{T Y G R C R}{T C 1}$	$\frac{\text { TY GR CR }}{\underline{G H 4}}$	$\frac{T Y G R C R}{M C B}$	$\frac{T Y G R C R}{G H 2}$	$\frac{\text { TY GR CR }}{\text { MCI-2 }}$	$\begin{aligned} & \text { TY GR CR } \\ & \text { BR1-2 MC1-2 } \end{aligned}$	$\frac{\text { TY GR CR }}{\text { BR1-2 }}$
2010																			
2011																			
2012																			
2013																			
2014																			
2015																			
2016		$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{Cl}$ (1)	$3 \times 1 \mathrm{Cl}$ (1)	$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(2)$	$3 \times 1 \mathrm{C}$ 2)										
	$3 \times 1 \mathrm{C}(1)$																		
2018							$3 \times 10(1)$				$3 \times 1 \mathrm{C}(1)$								
2019								$3 \times 1 \mathrm{C}(1)$										$3 \times 1 \mathrm{C}(1)$	
2020				$3 \times 1 \mathrm{C}(1)$		$3 \times 1 \mathrm{C}(1)$											$3 \times 1 \mathrm{C}(1)$		
2021												$3 \times 1 \mathrm{C}(1)$		3×1 (1)		$3 \times 1 \mathrm{C}$ (1)			
2022					$3 \times 1 \mathrm{C}(1)$				$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$			$3 \times 1 \mathrm{C}(1)$		$3 \times 1 \mathrm{C}(1)$				
2023			$3 \times 1 \mathrm{C}(1)$																$3 \times 1 \mathrm{C}(1)$
2024	$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{Cl}$ (1)					$3 \times 1 \mathrm{C}(1)$				$3 \times 1 \mathrm{C}(1)$								
2025								2xic (1)										$3 \times 1 \mathrm{C}(1)$	
2026				$3 \times 1 \mathrm{C}(1)$		$3 \times 1 \mathrm{C}(1)$											$3 \times 1 \mathrm{C}(1)$		
2027																			
2028					$3 \times 1 \mathrm{C}(1)$					$3 \times 1 \mathrm{C}(1)$		$3 \times 1 \mathrm{C}(1)$	3x1C(1)						
2029			$3 \times 1 \mathrm{C}(1)$						$3 \times 1 \mathrm{C}(1)$										$3 \times 1 \mathrm{C}(1)$
2030	$2 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$						$3 \times 1 \mathrm{C}(1)$											
2031							$2 \times 1 \mathrm{Cl}$ (1)				$2 \times 1 \mathrm{C}(1)$							$2 \times 1 \mathrm{C}(1)$	
2032																			
2033				$3 \times 1 \mathrm{C}(1)$		3×1 (1)													
2034														$3 \times 1 \mathrm{Cl}$ (1)		$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$		
2035	3x1C(1)				3×1 C(1)				$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$		$3 \times 1 \mathrm{C}(1)$	3×1 C(1)		$3 \times 1 \mathrm{Cl}(1)$				
2036		$2 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$				$3 \times 1 \mathrm{C}(1)$	$2 \times 1 \mathrm{C}$ (1)			$3 \times 1 \mathrm{C}(1)$							$3 \times 1 \mathrm{C}(1)$	$3 \times 1 \mathrm{C}(1)$
2037																			
2038																			
2039																			
2040				$\operatorname{scct}(1)$		scct (1)											$\operatorname{scct}(1)$		

U

箖
북
켴

뿣

̈ㅜㄱ
界

s

혁

管
\＃

g

習

a

8 茄
두룰

m

要只吴足吴品品总贸

000000000000000000

00000000000000000

莫
各古

00000000000000000

000000000000000000

 デ

 （\％）

000 呂 $8^{\circ} 0^{\circ} 00$

 -

 -

g

\qquad
\qquad
\qquad
\qquad

酋

管

苛

皆空㮯
옄
000000000
界
000000000
名鬲

 －

 N～NOO

\qquad
\qquad

 000000000000089000
\qquad 000000000000000000

 अ

g

篤

g

g

\＃

侖萮品

ต
$00000000000000 \underset{\sim}{n} \tilde{n}^{n} 000$

苟

홍
000000000000008^{8000}

嶨
$0000000000000 \underset{\text { 势 }}{ } 000$

劳

気

\qquad

 Hixinirnti

ब्वृ훛
$\stackrel{\text { g．}}{\text { g }}$

Retire TY GR CR and MC4 Retire TY GR CR and TC1 Retire TY GR CR and MC3 Retire TY GR CR and GH2 Retire TY GR CR BR1－2 and MC1－2 Retire TV GR CR and BR1－2	

00000000000000 思 000
$00000000000000 \operatorname{lig}_{\substack{4 \\ 4}}^{000}$
$000000000000008^{\circ} 000$
$0000000000000 \underset{\text { 热 }}{\text { H．}} 000$

$0000000 \underset{\substack{4 \\ 4}}{000000} \underset{\substack{\text { 品 }}}{000}$

－蓡
$\therefore 0$ 留 0000 荷

高

혈
g

为
I
当
I
1
：
＊
南
q
咢
紋
筧
罗
筧
兑
易
等
界
훔
：
Discount Rate：

```
    *
    A
%
    000000000000000000
    *
    000000000000000000
#
##
*
G
{
%
橉
宲
%
    㗭
    : %
    |
    *
    *
    魚
    켜ᄊ
#
\begin{tabular}{|c|c|c|c|}
\hline  & 䔍 & 䔍 &  \\
\hline  &  &  &  \\
\hline  &  &  &  \\
\hline 5 & 家 & 成 & 呂 \\
\hline  &  &  &  \\
\hline : & of & 啳 &  \\
\hline  &  &  &  \\
\hline & & & \\
\hline
\end{tabular}
```

\$
\#000000000000000000 000000000000000000
\$
\$000000000000000000 000000000000000000
0000000000000000000 000000000000000000

\$
0000000000000000000000000000000000000
\$
\$
0000000000000000000000000000000000000
|
\$
g000000000000000000 000000000000000000
\$
1
000000000000000000 000000000000000000
\&
1
0000000000000000000
000000000000000000
/
0000000000000000000000000000000000000
\$
000000000000000000
%
0000000000000000000000000000000000000
g
000000000000000000
|
0000000000000000000000000000000000000
g
0000000000000000000
|

```

\(\stackrel{7}{\text { 号 }}\)














豆
商 00000000000000000000000000000 志 000000000 N0000000

喜
荡

㟋 㖞品 ..... \({\underset{n}{\infty}}_{\infty}^{\infty} 0\)
 ..... ¢
\(\underset{4}{4} 00\)
 ..... \(\begin{array}{ll}0 & 90 \\ \substack{8 \\ n \\ 7}\end{array}\)
 ..... 
 ..... 
 ..... 8080
弟
i


 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
















品
芯

\begin{tabular}{|c|c|c|}
\hline 슛 & - & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \(\stackrel{\sim}{\sim}\) & \(\bigcirc\) &  \\
\hline \[
\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}
\] & \(\bigcirc\) &  \\
\hline \[
\stackrel{\rightharpoonup}{\text { IV }}
\] & \(\bigcirc\) &  \\
\hline \[
\stackrel{0}{\stackrel{\rightharpoonup}{N}}
\] & \[
\begin{aligned}
& \stackrel{8}{\mathrm{~N}}
\end{aligned}
\] &  \\
\hline \[
\stackrel{n}{i}
\] & 0 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\underset{\sim}{\square}
\] & - & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\underset{\sim}{\infty}
\] & \(\bigcirc\) &  \\
\hline \[
\begin{gathered}
\text { N } \\
\text { Ǹ }
\end{gathered}
\] & \(\bigcirc\) &  \\
\hline \[
\stackrel{\text { Hig }}{\text { N}}
\] & \(\bigcirc\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 응 & \(\bigcirc\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Retirement Cost & 2021 & 2022 & 2023 & 2024 & 2025 & 2026 & 2027 & 2028 & 2029 & 2030 & 2031 \\
\hline All Units & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{12}{|l|}{2\% Escalation Rate} \\
\hline \multicolumn{12}{|l|}{Unit Costs (\$000)} \\
\hline BR1 & 4,651 & 4,744 & 4,838 & 4,935 & 5,034 & 5,135 & 5,237 & 5,342 & 5,449 & 5,558 & 5,669 \\
\hline BR2 & 8,498 & 8,668 & 8,841 & 9,018 & 9,199 & 9,383 & 9,570 & 9,762 & 9,957 & 10,156 & 10,359 \\
\hline BR3 & 17,462 & 17,811 & 18,167 & 18,531 & 18,901 & 19,279 & 19,665 & 20,058 & 20,460 & 20,869 & 21,286 \\
\hline CR4 & 14,094 & 14,375 & 14,663 & 14,956 & 15,255 & 15,560 & 15,872 & 16,189 & 16,513 & 16,843 & 17,180 \\
\hline CR5 & 14,987 & 15,286 & 15,592 & 15,904 & 16,222 & 16,546 & 16,877 & 17,215 & 17,559 & 17,910 & 18,269 \\
\hline CR6 & 11,919 & 12,157 & 12,400 & 12,648 & 12,901 & 13,159 & 13,423 & 13,691 & 13,965 & 14,244 & 14,529 \\
\hline GH1 & 21,050 & 21,471 & 21,900 & 22,338 & 22,785 & 23,240 & 23,705 & 24,179 & 24,663 & 25,156 & 25,659 \\
\hline GH2 & 15,735 & 16,049 & 16,370 & 16,698 & 17,032 & 17,372 & 17,720 & 18,074 & 18,436 & 18,804 & 19,181 \\
\hline GH3 & 14,616 & 14,909 & 15,207 & 15,511 & 15,821 & 16,138 & 16,460 & 16,790 & 17,125 & 17,468 & 17,817 \\
\hline GH4 & 14,183 & 14,467 & 14,756 & 15,051 & 15,352 & 15,659 & 15,973 & 16,292 & 16,618 & 16,950 & 17,289 \\
\hline GR3 & 5,108 & 5,210 & 5,314 & 5,421 & 5,529 & 5,640 & 5,753 & 5,868 & 5,985 & 6,105 & 6,227 \\
\hline GR4 & 10,115 & 10,317 & 10,523 & 10,734 & 10,949 & 11,167 & 11,391 & 11,619 & 11,851 & 12,088 & 12,330 \\
\hline MC1 & 14,844 & 15,141 & 15,444 & 15,753 & 16,068 & 16,389 & 16,717 & 17,051 & 17,392 & 17,740 & 18,095 \\
\hline MC2 & 17,810 & 18,166 & 18,530 & 18,900 & 19,278 & 19,664 & 20,057 & 20,458 & 20,867 & 21,285 & 21,710 \\
\hline MC3 & 20,177 & 20,581 & 20,993 & 21,412 & 21,841 & 22,278 & 22,723 & 23,178 & 23,641 & 24,114 & 24,596 \\
\hline MC4 & 20,205 & 20,609 & 21,021 & 21,442 & 21,871 & 22,308 & 22,754 & 23,209 & 23,674 & 24,147 & 24,630 \\
\hline TC1 & 20,390 & 20,798 & 21,214 & 21,638 & 22,071 & 22,512 & 22,962 & 23,422 & 23,890 & 24,368 & 24,855 \\
\hline TY3 & 490 & 500 & 510 & 520 & 530 & 541 & 552 & 563 & 574 & 586 & 597 \\
\hline
\end{tabular}













 렬
\(\frac{\text { Year Equipment }}{2014}\) PJFF／PAC
2014 SAM Mitigation
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
2014 SAM Mitigation
2015 PJFF／PAC
2015 PJFF／PAC
2014 PJFF／PAC
2014 SCR Turn－Down
2014 SCR Turn－Down 2013 SAM Mitigation 2013 SAM Mitigation 2012 Sorbent Injection
2015 PJFF／PAC 2013 SCR Turn－Down 2013 SAM Mitigation 2014 SCR Turn－Down 2013 SAM Mitigation 2015 Combined 1\＆2 FGD 2015 PJFF／PAC
2015 SAM Mitigation 2015 Combined 1\＆2 FGD 2015 PJFF／PAC
2015 SAM Mitigation
2014 FGD． 2014 FGD． 2013 SAM Mitigation 2013 SCR Turn－Down \begin{tabular}{c} 
品 \\
志 \\
\hline
\end{tabular} 2014 PJFF／PAC
2014 SAM Mitigation 2014 SAM Mitigation 2015 PJFF／PAC 둔
0
号 0
3
3
0
呙

 \(1,251,000\)
177,000
172,000
\(2,392,000\)


\(\qquad\)


 




\(\stackrel{\oplus}{4}\)
형00000
엥 00000
त्ल刂100000
둥
2010
Fixed O\&M
\(\$ / \mathrm{yr}\)
\(3,322,000\)
141,000
0
\(4,309,000\)
150,000Year \$:


덩 뚱 뚱 뚱 뚱









苛
 NㅔN


 NO
 \begin{tabular}{l} 
品 \\
0 \\
0 \\
\(\infty\) \\
\hline
\end{tabular}


薟茄 \(\stackrel{7}{0}^{\circ}\)氙









 옹․



 \(\stackrel{\infty}{\infty}\)

 0
\(1,776,807\)
44,388
0
\(1,157,040\)

 or
俞
高
旁合 \(\stackrel{\sum_{\infty}^{5}}{0}\)
Year Equipment
2014 PJFF／PAC
2014 SAM Mitigation
2014 PJFF／PAC
2014 SAM Mitigation
2015 PJFF／PAC
2014 PJFF／PAC
2014 SCR Turn－Down
2013 SAM Mitigation

呆

 2014 SCR Turn－Down



2015 SAM Mitigation




2014 PJFF／PAC


号
3
3
0
0
0
0

 888
88
\(\underset{\sim}{i}\)
\(\underset{\sim}{N}\)



\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\multicolumn{4}{c}{ Escalation Rate: } \\
& & \multicolumn{1}{c}{\(2 \%\)} & \multicolumn{1}{c}{ Year \$: } \\
& & \multicolumn{1}{c}{2010} \\
Fixed O\&M
\end{tabular}
종 둥 동 당 둥





ì
2

\(\qquad\) 2014 PJFF／PAC 2014 PJFF／PAC 2014 SAM Mitigation
2015 PJFF／PAC 2014 SCR Turn－Down uones！uw wVs etoz
y
\(\frac{8}{4}\)
늠
\(\stackrel{4}{4}\)
\(\stackrel{y}{d}\)
 umod－undyכs etoz 2013 SAM Mitigation 2014 SCR Turn－Down 2014 SCR Turn－Down כVd／』jld SIOZ
aSt Z8L pauquoo SLOZ 2015 PJFF／PAC 2015 SAM Mitigation
 2015 SAM Mitigation 2014 FGD 2015 PJFF／PAC uMOD－um \(\perp\) YOS EIOZ 2014 FGD 2014 PJFF／PAC

 2015 PJFF／PAC
2016 SCR 2016 WFGD
荅
2016 SAM Mitigation 2016 PAC Injection 2016 SCR 0
0
\(\frac{1}{3}\)
0
0
d

 צ
N
0
0
0
O \begin{tabular}{l} 
号 \\
\(\frac{4}{3}\) \\
0 \\
0 \\
0 \\
\hline
\end{tabular} 2016 PJFF
 \begin{tabular}{l} 
M \\
0 \\
0 \\
0 \\
\hline
\end{tabular} Escalation Rate：







\(1^{1+\cdots}\)

登哭志志志志

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
















 8


部













雚等号骂品
学学守器
発埾学
萝臨
물


\begin{tabular}{|c|c|}
\hline  &  \\
\hline  & ввяаяяяя \\
\hline  &  \\
\hline  & Rnamata \\
\hline  & \%**** \\
\hline  &  \\
\hline  & \% \\
\hline  & \%as \\
\hline  & \({ }^{88}\) \\
\hline \% \({ }^{\text {a }}\) & \% \\
\hline ! & * \\
\hline
\end{tabular}






嵒号客意 ..... 
\(\square\)

発出














울 굼
뭄
믐
豪

\(\stackrel{ \pm}{5}\)



















気
 0000000000000000 登




























\begin{tabular}{|c|c|c|}
\hline  &  & ¢ \\
\hline  &  &  \\
\hline  &  &  \\
\hline  &  &  \\
\hline  &  &  \\
\hline 第品㖪等 &  &  \\
\hline 兴㗊寽 &  &  \\
\hline 宮霌 &  &  \\
\hline \％ &  &  \\
\hline
\end{tabular}


















 \(\ddagger\)
 q
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

\footnotetext{
㩱
 \(\stackrel{4}{5}\)
}
喿
管 












登
苂
亮

 






皆
足
U 

\(\stackrel{5}{5}\)














\footnotetext{
高

蒿

든
}

呙










高 00000000000 出

華
苂


\section*{}

 şu!nes \(\varepsilon\) วseपd I!!fpue7 yя şu!nes wro II!!pue7 ys



 soulnes Wro II!fpue7 HD











 \(000 \underset{\substack{\hbar \\ \text { N }}}{000000}\)

 00



\(\circ 0\)




m
8
\(\stackrel{\circ}{\circ}\)
-

\(\stackrel{m}{\underset{\sim}{N}}\)



\(\circ 0\)

00

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  & \[
\begin{aligned}
& \stackrel{y}{\stackrel{N}{N}} \stackrel{0}{\gtrless} \\
& \underset{\sim}{\wedge}
\end{aligned}
\] &  \\
\hline  & \[
\begin{aligned}
& \dot{0} \infty \\
& \underset{\sim}{\infty} \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
\] &  \\
\hline  & \[
\begin{aligned}
& \text { on } \\
& \underset{\sim}{\circ} \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
\] &  \\
\hline  &  &  \\
\hline  &  &  \\
\hline  & \[
\begin{aligned}
& \stackrel{\leftrightarrow}{N} \\
& \underset{N}{N} \\
& \underset{N}{2}
\end{aligned}
\] &  \\
\hline  & 鹪瞞 &  \\
\hline  & \[
\underset{\sim}{\underset{\sim}{\mathrm{N}}} \underset{\sim}{\mathrm{~N}}
\] &  \\
\hline  &  &  \\
\hline  & \[
\begin{aligned}
& \infty \\
& \stackrel{\infty}{\infty} \\
& \underset{\sim}{m} \\
& \underset{\sim}{4}
\end{aligned}
\] &  \\
\hline  &  &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \[
\infty_{m}^{\infty}
\] &  \\
\hline
\end{tabular}

\footnotetext{
Station

}


\footnotetext{
Station

}
\begin{tabular}{|c|c|}
\hline  &  \\
\hline \multicolumn{2}{|l|}{P0.0000000000000000} \\
\hline \multicolumn{2}{|l|}{险0000000000000000} \\
\hline & \\
\hline  & 所 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline  & \[
\underset{\sim}{\infty}
\] \\
\hline  &  \\
\hline  & gio \\
\hline  & 咢 \\
\hline  &  \\
\hline  &  \\
\hline  & \[
\underset{\sim}{7}
\] \\
\hline  & \[
\underset{\sim}{\infty}
\] \\
\hline  &  \\
\hline 总名夺哭 &  \\
\hline 弟品式岱 &  \\
\hline  &  \\
\hline  & \[
\stackrel{\sim}{\sim}
\] \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  & \[
\stackrel{\infty}{\infty}
\] \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 葔 0000000000000000000 & \\
\hline 莒 0000000000000000000 & 000000 \\
\hline N & 000000 \\
\hline W00 & 000000 \\
\hline 兌0000000000000000000 & 000000 \\
\hline 㞻 0000000000000000 N్ & \[
000 \underset{0}{0} 00
\] \\
\hline \[
\text { NoN入N} 0000000000000000 \underset{N}{N} \mathrm{~N}
\] & \[
000 \text { 岕 } 00
\] \\
\hline NOOOOOOOOOOOOOOOONO & \(000 \underset{\underbrace{}_{n}}{\infty} 00\) \\
\hline 葛0000000000000000品罚0 & \[
000 \text { 名 } 00
\] \\
\hline  &  \\
\hline  & \[
{\underset{\sim}{n}}_{\substack{n}} 000 \underset{\sim}{0} 0
\] \\
\hline  & \[
\text { 罗 } 00 \text { 목 }
\] \\
\hline 太্Nি す &  \\
\hline  &  \\
\hline
\end{tabular}

\section*{}






\％

g
s
：




灵





兑
总






























































保







 －※






0000000000000000000000000000000
0000000000000000000000000000000










\section*{}
期
部 H明錯
明


触高害




苞 \(8{ }^{\circ}{ }^{\circ}\) Discount Rate：\(\quad 6.71 \%\)




 －




































 －


























\(4{ }^{20} 7\) annemain mineme



mixicum





















000 웅
















g




0000000
篦

界

\section*{8 䓵}

둥























































\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{DIscount Rate:} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline & \[
\underset{\substack{\text { SM } \\ \text { NPVBR }}}{ }
\] & \[
\begin{aligned}
& \begin{array}{l}
\$ 000 \\
2011
\end{array}
\end{aligned}
\] & 2012 & 2013 & 2014 & 2015 \\
\hline Retire TY Gra \(\mathrm{CR}^{\text {and }}\) GH1 & \({ }_{9}\) & [10. & 0 & 20 & 20. & \\
\hline Retire \(T / G \mathrm{G}\) and CR & 9 & 0 & 0 & 0 & - & \\
\hline Retire TY GR CR and MCA & 11 & - & - & - & - & \\
\hline Retire TY GR CR and TC1 & 11 & 0 & 0 & - & 0 & \\
\hline Retire TY GF CR and \(\mathrm{CH}_{4}\) & 1.1 & 0 & 0 & 0 & 0 & \\
\hline Retire TY GR CR and MC3 & 11 & 0 & 0 & 0 & 0 & \\
\hline Retire TY Gr CR ond GHz & 11 & 0 & - & - & - & \\
\hline Retire TY GR CR and MC1-2 & 12 & 0 & 0 & 0 & - & \\
\hline Retire TY GR CR BR1-2 3nd MCL-2 & 15 & 0 & 0 & - & \(\bigcirc\) & \\
\hline Betirement 0 MM Cort Delta & & & & & & \\
\hline No Retirements & & & & & & \\
\hline
\end{tabular}




\section*{}
























8
第



































느․․․․



000000000000000000000


\section*{ \\ }



















孯

\section*{g}

\section*{各品}

云管





\section*{}














```

 00000000000000gg00
    ```









































\section*{}








\section*{ \\ }

\section*{}











\section*{}



































```

迢 웅

```


뿍

先
胃
䘽
：
\％
푹
界
多
等
：
：
思
困
思
筧
第
：


争荌总
察零学
界奚等

ナ



























00000000000000 祭 00
\(0000000000000 \operatorname{gg}_{8}^{9} 00\)
0000000000000800
000000000000 㘶


000000 習 000000 品

































\section*{\％}

多

\section*{훅}
\％


登
：



罝
มี
\begin{tabular}{|c|c|c|}
\hline 000000000 & & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 000000000 & 00000000000000000 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 000000000 & 00000000000000000 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 000000000 & 00000000000000000 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 000000000 & 00000000000000000 &  \\
\hline 0 & 0 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 000000000 & &  \\
\hline
\end{tabular}

\section*{a}




































00000000000000 勧 00

\begin{tabular}{|c|}
\hline \[
\begin{array}{r}
0000008 \\
\\
\hline 8
\end{array}
\] \\
\hline \(0000000000000 \frac{\mathrm{~g}^{2}}{4} 00\) \\
\hline 00000 永 000000 置 00 \\
\hline \(0000000 \underset{\sim}{\text { 登 }}\) \\
\hline \[
0 \sim 0
\] \\
\hline
\end{tabular}






等趽需










要㽞总皆
















0000000000000000000000000000000

腎
: 병
滴
㒭
İ
㲒
园
固
:
单
眞
各
볍
宽
装
因
葛
署
曾
엽
\begin{tabular}{|c|}
\hline Discount Rate： \\
\hline Retire TY GR3 CR4 and CRG \\
\hline Retire TY Gr3 Cr4 Crg and bri－z \\
\hline Retre TY GR3 and CR \\
\hline Retre TY GR3 CR and 6 H 3 \\
\hline Retire TV GR3 CR ond \(G H 1\) \\
\hline Retir \(T Y\) GR and \(C R\) \\
\hline Retire TY GR CR and MC4 \\
\hline Retir TY GR CR and TC1 \\
\hline Retire TY GR Cra and 6 H4 \\
\hline Retire TY GR CR and MC3 \\
\hline Retire TY GR CR and \(G \mathcal{H}\) \\
\hline Retire TY GR CR and Mcl \\
\hline Retire TY GR CR BR1－2 and MC1－2 \\
\hline
\end{tabular}



















 I

获

\(\underset{7}{6} 00\)

















 듷
\(\stackrel{y}{*}\)
in


梁 0000000 罚
莴
品00000000000000000000000000000000000000000000000
㞻0000000 热




克 \(0000 \underset{\sim}{0} 000\) 品
塄 0000 苞
緊管的




曾















 त्N刂 -10000000000000000000000000000000000000000000000000000

\begin{tabular}{|c|c|}
\hline  &  \\
\hline  & 产号亭总弟 \\
\hline  & 亭学与烫 \\
\hline  & 寽缶喿 \\
\hline  &  \\
\hline  &  \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}











登














品需占品品
范 N

唚
品命总

哭
豆
훓

芩
















志 \(\underset{\sim}{\tilde{m}} \underset{\sim}{7}\)
亭品
\(\tilde{\sim}^{\circ}\)
룰\({ }^{8}\)
容






 우N











范



















































旁品蒋

苝

\footnotetext{


苂
}

든
献









   －
\(\mathfrak{8}\)

夺纳に\(\stackrel{\infty}{q}\)




\(\stackrel{\pi}{n}\)
\(m\)
in
\(\stackrel{\infty}{i}\)
启
耧   ..... 苂

品











菏手 \(M\) 的








芌
들
范
\begin{tabular}{|c|c|}
\hline  & 00000000000000000000000 \\
\hline  & 000000000000000000000000 \\
\hline  & 0000000000000000000000000 \\
\hline  & 000000000000000000000000 \％ \\
\hline  & 000000000000000000000000 尔品 \\
\hline  & 0000000000000000000000000 氙囬房 \\
\hline  우욱우 &  \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}

 



  ..... 愛
呙
荢

呙






㣍





를
0
0
\(i\)


苂
亳




















等劳







\(000 \underset{\substack{\text { 苃 }}}{000000}\)
覴 000 品品品 0000
\(\circ \circ\)

各


\footnotetext{
등
荡
品

}

\begin{tabular}{|c|c|}
\hline  &  \\
\hline  & min mig min \\
\hline  &  \\
\hline \(\underset{\sim}{\text { m }} 0000000000000000000\) & 000000 \\
\hline \(\underset{\sim}{\text { Non }} 000000000000000000\) & 000000 \\
\hline 荡 & 000000 \\
\hline  &  \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  & م气o \\
\hline  & \[
\underset{\sim}{\text { g O O O }}
\] \\
\hline  &  \\
\hline  & 気○ \\
\hline  & N్N్స \\
\hline  &  \\
\hline 关荡式岱 &  \\
\hline  & Nix \\
\hline  &  \\
\hline
\end{tabular}

\section*{}

\begin{tabular}{|c|c|}
\hline 留 0000000000000000000 & \[
000000
\] \\
\hline 总 0000000000000000000 & 000000 \\
\hline 气े & 000000 \\
\hline 10000000000000000000 & 000000 \\
\hline \(\operatorname{HOn}_{0}^{2000000000000000000}\) & 000000 \\
\hline 㞻 0000000000000000 N゙ & \[
000{\underset{i n}{n} 00}_{0}^{0}
\] \\
\hline Mol & \[
000 \text { fi } 0
\] \\
\hline  & \[
0000000
\] \\
\hline 资 0000000000000000 呙罥 & \[
000800
\] \\
\hline  & \[
\begin{gathered}
0000_{\dot{U}}^{0} 0 \\
\overrightarrow{0} \\
\vec{i}
\end{gathered}
\] \\
\hline  &  \\
\hline  &  \\
\hline  & \[
\underset{\sim}{\text { fir }}
\] \\
\hline \[
\begin{aligned}
& \text { 咅 } \\
& \text { 苞 } \\
& \stackrel{0}{3}
\end{aligned}
\] &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \({ }^{1}\) & 2 & \({ }^{3}\) & 4 & 5 & 5 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline & \(\xrightarrow{\text { Notirements }}\) & IY & TY GR 3 & TY GR3 \({ }^{\text {PR3 }}\) & TVGR3CR4 & \[
\frac{T V G R 3 \text { CR4 }}{\underline{C R 5}}
\] & \[
\frac{\text { TY GR3 CR4 }}{\text { CR6 BR1-2 }}
\] & TY GR3CR & \[
\frac{T Y G R 3 C R}{G H 3}
\] & \[
\frac{\text { TYGR3CR }}{\text { GH1 }}
\] & TYGRCR & \[
\frac{T Y G R C R}{M C 4}
\] & \[
\frac{T Y G R C R}{T C I}
\] & \[
\frac{\text { TVGRCR }}{\underline{G H 44}}
\] & \[
\frac{T V G R C R}{M C 3}
\] & \[
\frac{\text { TYGRCR }}{\underline{G H 2}}
\] & \[
\frac{T Y G R C R}{M C 1-2}
\] &  \\
\hline 2010 & & & & & & & & & & & & & & & & & & \\
\hline 2012 & & & & & & & & & & & & & & & & & & \\
\hline 2013 & & & & & & & & & & & & & & & & & & \\
\hline 2014 & & & & & & & & & & & & & & & & & & \\
\hline 2015 & & & & & & & & & & & & & & & & & & \\
\hline 2016 & & \(3 \times 1\) ( 1 1) & \(2 \times 1\) ( 1 ) & \(3 \times 10(1)\) & \(2 \times 1 \mathrm{C}(1)\) & \(3 \times 1 C^{(1)}\) & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 1 \mathrm{C}(2)\) & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 1 \mathrm{C}(2)\) & \(3 \times 10(1)\) & \(3 \times 1 \mathrm{c}(2)\) & \(3 \times 1 \mathrm{C}(2)\) & \(3 \times 1 \mathrm{C}(2)\) \\
\hline 2017 & \(3 \times 1 \mathrm{C}\) 1) & & & & & & & & \(2 \times 1 C^{(1)}\) & \(2 \times 1 \mathrm{C}(1)\) & & & \(2 \times 1 \mathrm{C}(1)\) & & \(2 \times 1\) ( 1) & & & \\
\hline 2018 & & & & & & & \(3 \times 1 \mathrm{C}(1)\) & & & & \(3 \times 1 \mathrm{C}(1)\) & & & & & & & \\
\hline 2019 & & & & & \(2 \times 1 \mathrm{C}(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & & & & & & & \(3 \times 1 \mathrm{C}(1)\) \\
\hline 2020 & & & \(2 \times 1 C^{(1)}\) & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1\) C( 1) & & & \(3 \times 18(1)\) & & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & \\
\hline 2021 & & & & & & & & & & & & \(2 \times 1 \mathrm{C}(1)\) & & \(2 \times 1 . C(1)\) & & 2×1C( 1) & & \\
\hline 2022 & & & & & & & & & & & & & & & & & & \\
\hline 2023 & & & & & & & & & & & & & & & & & & \\
\hline 2024 & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 10(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & & & \(3 \times 18(1)\) & & & & & & & \\
\hline 2025 & & & \(3 \times 1\) ( 1 1) & & & & & \(3 \times 1 \mathrm{C}(1)\) & & & & \(2 \times 1 \mathrm{C}(1)\) & & \(2 \times 1 \mathrm{C}(1)\) & & 2xic( 1 ) & & \(3 \times 1 \times(1)\) \\
\hline 2026 & & & & \(2 \times 1 \mathrm{C}(1)\) & & \(\left.2 \times 1 C^{1} 1\right)\) & & & \(2 \times 1\) ( 1 ) & \(3 \times 1\) ( 11 & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & \(2 \times 1 \mathrm{C}(1)\) & \\
\hline 2027 & & & & & & & & & & & & & & & & & & \\
\hline 2028 & & & & & & & & & & & & & & & & & & \\
\hline 2029 & & & & & & & & & & & & & & & & & & \\
\hline 2030 & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 10(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 10(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 10(1)\) & & 3x1C( 1 ) & & \\
\hline 2031 & & & \(3 \times 1 \mathrm{C}(1)\) & & & & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 12(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & & & & & \(3 \times 1 \mathrm{C}(1)\) & \(3 \times 1 \mathrm{C}(1)\) \\
\hline 2032 & & & & & & & & & & & & & & & & & & \\
\hline 2033 & & & & & & & & & & \(3 \times 1 \mathrm{C}(1)\) & & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & & \\
\hline 2034 & & & & & & & & & & & & & & & & & & \\
\hline 2035 & & & & & & & & & & & & & & & & & & \\
\hline 2036 & Scet (1) & \(\operatorname{secte}(1)\) & & & & & & & & & & \(\operatorname{scct~} 11\) & & \(\operatorname{sccte}(1)\) & & \(\operatorname{sccte}(1)\) & & \\
\hline 2037 & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & \(\operatorname{sCct}\) (1) & & Scct 1 1) & & SCCT 1 1) & \(3 \times 1 \mathrm{C}(1)\) & \\
\hline 2038 & \(3 \times 1 \mathrm{C}(1)\) & & SCCT (1) & & & & & \(\operatorname{sccte}\) (1) & & & & & & & & & & SCCT( 1 ) \\
\hline 2040 & & & \(3 \times 1 \mathrm{C}(1)\) & & & & & \(2 \times 10\) ( 1) & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) & & \(3 \times 1 \mathrm{C}(1)\) \\
\hline
\end{tabular}

\section*{}



范 荎


























 F














































为



\section*{}
\(0000000000000 \% 000000000000000\)


M


范
















 ต（
 gig





䔒鬲亳 a 8
                            \(\circ\)
        品





























\(\qquad\)














 ละกํ



\section*{}






















































\begin{tabular}{l} 
6．71\％ \\
SM \\
Ievas \\
\hline
\end{tabular}





























\begin{tabular}{|c|c|}
\hline  & \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & 穴 \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  \(\stackrel{7}{7}\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & 00 \\
\hline 000 啊咢 0 品 000000000 & \(\bigcirc\) \\
\hline  & 0000 \\
\hline  &  \\
\hline
\end{tabular}



\(\qquad\)
登
    8


































 CHODOL










\(\qquad\)













\section*{}















戠
























































\begin{tabular}{|c|}
\hline Retire TY GR3 CR and GHI Retire TY GR and CR Rell TM GR and MC4 Retire TY GR CR and TCI Retire TY GR CR and GH4 Retre TY ©R CR and GHz Retire TY GR CR and MCL-2 nent O\&M Cost Dittr \\
\hline Relirements \\
\hline \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline Reite Troina \\
\hline Retere TY Car ir and MC4 \\
\hline Retretior \\
\hline Returetiog \\
\hline \({ }_{\text {Retire }}\) R Gr \\
\hline  \\
\hline  \\
\hline Retil \\
\hline Retit \\
\hline \\
\hline Relitre 7 Y and \(G\) gr \\
\hline \\
\hline Retire TY Gr3 and Cr84 \(^{\text {a }}\) \\
\hline Yer \\
\hline  \\
\hline Rettre TY GBa cra and \\
\hline  \\
\hline Retire 7 gra \\
\hline Restre TV GR C Crand MCA \\
\hline  \\
\hline + \\
\hline  \\
\hline Reitrer 768 CB and Mc -2 \\
\hline \\
\hline Exisinine Uritifixed domm oita \\
\hline
\end{tabular}





















\(\qquad\) g各品





品员品号
















































¢ जै




















\section*{}
























g
훙
摞
党
：
多
펵
g
훌
g
형

혐
g

等
：
管
等
㘣

Discount Rate：









14
















 Retre \(T \mathrm{GR} \mathrm{CR}\)
Production cost Delta























－－＊


00000000000000 朤 00

\(0000000000000 \frac{8}{4}_{7}^{00}\)
\(00000000000000 \underset{T_{0}^{G}}{\vec{G}}\)








0 ○

品品号品 0 ○




品品品。 o＂






3













































咅






\(000000000000000^{00}\)
\(00000000000000 \mathscr{M}_{\substack{2}}^{\substack{2}}\)
00000000000000800
0000000000000 年00


\(0000000 \underset{\sim}{\text { g }} 000000\) 品 00




















            :
            :

            尔

                    g


                    是
    \(1^{000000000000}\)


                    界
00000000
    100000000
最







g
훙
胃
骂

벽
불
훅
궁
绕
：
：
＊
娄
：
：
界
\％
：





























\(0000000000000 \underset{\underset{y y}{m} 00}{ }\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\underset{\sim}{7}
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\(0000000000000 \mathrm{~g}_{\dot{4}}^{900}\) \(0000000000000 \underset{\substack{4 \\ 4}}{\underset{4}{4} 00}\)








○○









\％ㅇ․․













毣


复

\section*{葠}
！
界
\％
蕃
界
g
สี
รู
？
g
胃
\％

琞
g
g
\％
축

명
뿡
洶
哥
명
弟
Discount Rate：








ㅃㅋㅋ
界
a
뼝
\＃
园
：
멱
冬
等
罗
易
署
兹
：
浆
兌
g
g
＂
뿡
曻
훜
匋
춤
꿌
笪
璺
훙
몀
肂
告
苐
뿍
혁
움
瀪
堂
咢
쿡



minit ｜himmimim

    :
    然
    烡
    흄
    貌
    *
    붕
    훔
    윰
    엽
    볌
    首
    总
    킄
    瑙
    븜
    弟
    弟
    装

10/17/2011
















呂 0000000000000000000000000000 岕 0000000000000000

䯧

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{¢人N゙N f}} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}















 듬


    \(\stackrel{\leftrightarrow}{\stackrel{H}{c}}\)

    \(\underset{\sim}{\text { N }}\)






























 형


















 8


暈



\section*{}

\section*{}










学学与器
発昆咢

\begin{tabular}{|c|c|c|}
\hline \％ &  &  \\
\hline ¢ &  &  \\
\hline \(\stackrel{8}{8}\) &  &  \\
\hline \(\stackrel{\square}{3}\) &  & － \\
\hline \(\stackrel{3}{8}\) &  &  \\
\hline \(\stackrel{3}{3}\) &  &  \\
\hline กี่ &  &  \\
\hline \({ }^{3}\) &  &  \\
\hline 8 &  &  \\
\hline \(\stackrel{\square}{8}\) &  &  \\
\hline \(\stackrel{\text { \％}}{ }\) &  &  \\
\hline \({ }_{3}\) &  &  \\
\hline \(\stackrel{\square}{3}\) &  &  \\
\hline \(\stackrel{1}{7}\) &  &  \\
\hline ＊ &  &  \\
\hline \(\stackrel{3}{3}\) & 突罢员 & 碞号 \\
\hline \％ & \(\frac{8}{\text { 易高 }}\) & 路 \\
\hline \({ }_{8}^{\frac{1}{3}}\) & \(\stackrel{\text { ¹ }}{\text { ¢ }}\) & \％ \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline
\end{tabular}








 
 






 总号总㖛
 ..... 
\(\stackrel{\circ}{\circ} \stackrel{m}{c}\) ..... ํㅜㅇ 우ํ
\(\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{0}}\)骂
릉
感
  ..... \(\square\)

18
 ..... 8

 ..... \(\stackrel{\otimes}{\circ}\)


 N\(\stackrel{m}{ }\)


 F
 ..... 8
뭄
\({ }_{\infty}^{\infty}\)
믐
＊
믐
\({ }^{\circ}\)
\(\stackrel{\infty}{\stackrel{\infty}{ }}\)
 ..... 品
今
 ..... \(\overrightarrow{7}\)
号
总  ..... \(\stackrel{\square}{7}\)
\(\stackrel{\rightharpoonup}{J}\) 욱 욱 ⿹ㅓㄱ ..... ̃
\(\underset{\sim}{\underset{\sim}{d}}\) \(\stackrel{\rightharpoonup}{\mathrm{A}} \stackrel{\sim}{\mathrm{N}}\) ..... \(\stackrel{\Im}{7}\)
त्ल̈ ..... 节品 ..... \(\stackrel{\hat{m}}{ }\) ..... あ
あ
あ \(\vec{~}\)














\(\underset{\sim}{\underset{\sim}{n}} \underset{\sim}{9}{ }_{9}^{\infty}\)둥
\(\underset{\sim}{\square}\)
高

荧
듞
荡






















品品吉品志品咢等寽志志






商呂会




























\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline 或㗊守 &  &  \\
\hline 楟雱 &  &  \\
\hline 癸 &  &  \\
\hline
\end{tabular}











\begin{tabular}{|c|c|c|}
\hline  &  & F \\
\hline  &  & q \\
\hline  &  & \% \\
\hline  &  & \(\stackrel{\infty}{q}\) \\
\hline  &  & \(\stackrel{\square}{n}\) \\
\hline  &  & M \\
\hline  &  & in \\
\hline  &  & \(\infty\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { 휴 } \\
& \text { ( } \\
& \text { mi }
\end{aligned}
\]

苂
苐 
筞 
















言
感
I 
\begin{tabular}{|c|c|}
\hline  & 000000000000000000000000 \\
\hline  & 000000000000000000000000 \\
\hline  & 0000000000000000000000000 \\
\hline  & 000000000000000000000000000 筬 \\
\hline  & 00000000000000000000000000 Nepren \\
\hline  &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 \\
-o
\end{tabular} &  \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}

































兌 N N N N N N N 呙





















产
总


苂
듳
意

8

\section*{}

 ᄃ
\(\stackrel{0}{0}\)
芯

00


¢
\(\underset{N}{N}\)
\(N\)













극





00
\(00 \quad 000 \underset{\sim}{\infty} 0000000\)
\(0 \quad 000\) すु 000000
\(0 \quad 000 \underset{\mathrm{~K}}{0} 000000\)


BR Landfill Phase 2 Savings

 CR Landfill O\&M Savings
CR6 Stator Rewind Savings
 TC Landfill O\&M Savings

 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 

 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
 ..... 
浱
管\(8{ }_{8}^{8}\)


\begin{tabular}{|c|c|}
\hline 覴 0000000000000000000 & 000000 \\
\hline 腎0000000000000000000 & 000000 \\
\hline 䍚0000000000000000000 & 000000 \\
\hline 号0000000000000000000 & 000000 \\
\hline 答0000000000000000000 & 000000 \\
\hline 夢0000000000000000 \({ }^{\text {䔍0 }}\) & 000900 \\
\hline 無0000000000000000䧲0 & \(000 \mathrm{fl}^{0}\) \\
\hline 筌0000000000000000第号0 & 000000 \\
\hline  & 000900 \\
\hline  & 000号薥。 \\
\hline  &  OOM品品。 \\
\hline  &  \\
\hline
\end{tabular}



\section*{Advocacy group: Fracking makes natural gas 'bridge to nowhere'}

\section*{June 14, 2011}

\section*{By Bryan Schutt}

Advocacy group Food \& Water Watch on June 13 called for a nationwide ban on hydraulic fracturing in shale gas plays and advocated for an aggressive investment in energy efficiency and renewable energy.
"What we've seen happen with fracking, what we know and don't know about fracking is enough to ban the practice from going forward," Jim Walsh, New Jersey director of Food \& Water Watch, said in an interview. "We don't really see a responsible way for this practice to continue to go forward, which is why we're calling for a ban on fracking. We don't think it's going to be able to be done safely."

In a new report detailing their concerns, Food \& Water Watch said the rapid expansion of shale gas extraction has left behind a trail of environmental and economic. problems in rural communities.
"Accidents and leaks have polluted rivers, streams and drinking water supplies. Regions peppered with drilling rigs have high levels of smog as well as other airborne pollutants, including potential carcinogens. Rural communities face an onslaught of heavy truck traffic - often laden with dangerous chemicals used in drilling - and declining property values," according to the report. "The 'bridge fuel' of fracking could well be a bridge to nowhere."

The report summarized 10 studies about the environmental effects of hydraulic fracturing operations and concluded that the wellstimulation technique poses an unacceptable risk to the nation. Further, Food \& Water Watch said increased use of fracking represents a "misguided energy policy direction for the United States."

While the gas industry has launched a massive lobbying campaign to sell natural gas to lawmakers and the public, the group criticized regulators for being asleep at the switch. "The current loopholeridden laws and haphazard enforcement leave communities and the environment vulnerable to fracking pollution," the report said. "To safeguard public health and the environment, the federal government should ban shale gas fracking and invest in a sustainable energy future for the country."

Food \& Water Watch released the report as part of its anti-gas lobby in New Jersey, which Walsh believes is gaining traction among legislators. "Right now, I believe there is about 12 legislators that have signed on in support," he said. "The ban bill also unanimously moved out of the Senate Environment Committee with votes from Republicans and Democrats."

In addition to a fracking ban, Walsh said, the state should prohibit all activities related to hydraulic fracturing such as water withdrawals and waste disposals that support the industry. "Spills, trucking accidents and things like that from waste coming into the state could adversely impact our drinking water."

Although there has not been much industry interest in shale acreage in New Jersey, the ban would represent more than symbolism, Walsh said. "In the northwestern part of the state, there are shale deposits that have the hydrocarbons. Even though there aren't leases pending right now, the only reason I believe the industry isn't going after those deposits is because they are a lot deeper than the Marcellus Shale in Pennsylvania and New York."

The New Jersey Sierra Club and Delaware Riverkeeper Network joined Food \& Water Watch in calling for a fracking ban.
"The first rule in public health and safety is do no harm, and right now there is no fracking way that it is safe and a ban should be in place," Jeff Tittel, director of the New Jersey Sierra Club, said in a statement. "Until we get rid of the Halliburton loophole that exempts fracking from seven major federal environmental laws, including Superfund and the Clean Water Act, until all the different studies are done that independently analyze the impacts of fracking, we should not allow fracking to go forward. It is too risky to our environment and water supplies." \(\boldsymbol{i}\)

\title{
CNYOG's MARC I project becomes battleground for Marcellus Shale opponents
}

\section*{July 13, 2011}

\section*{By Sean Sullivan}

Central New York Oil and Gas Co. LLC defended FERC's positive environmental review of the MARC I Hub Line Project on July 11 as environmental groups and thousands of individuals poured into the FERC proceeding, protesting not only the natural gas pipeline expansion but all Marcellus Shale development.

Protests came from lawmakers; environmental groups including the Coalition for Responsible Growth \& Resource Conservation, Damascus Citizens for Sustainability, the Sierra Club and Trout Unlimited; and citizen comments, including more than 20,000 form letters filed as part of an Earthjustice online campaign. They objected to FERC's finding that the Pennsylvania project would have no significant impact on the environment. They asked for a full environmental impact statement, including a review of the cumulative impacts of all Marcellus Shale gas infrastructure and activity.
The case is an example of how opponents of shale development might use the FERC review process for pipelines and storage projects to broadly challenge production activity not normally under the commission's jurisdiction.
In its comments, CNYOG supported the May 27 environmental assessment prepared by FERC staff as "both comprehensive and detailed."The Inergy LP subsidiary said a more involved environmental impact statement is "unnecessary." The MARC I Hub Line Project would be a roughly \(40-\mathrm{mile}, 30\)-inch-diameter bidirectional pipeline in Bradford, Sullivan and Lycoming counties, Pa.
"The EA addresses all major areas of environmental concern, including: geology, soils, water resources and wetlands, vegetation and wildlife, endangered and threatened species, land use, socioeconomics, cultural resources, air quality and noise levels, reliability and safety," CNYOG said.
CNYOG noted that it intends to comply with FERC's proposed environmental mitigation measures. As an example, the company said the Audubon Society's concern that it had not filed a migratory bird assessment and habitat restoration plan is addressed by a recommendation in FERC's environmental assessment. Under that requirement, CNYOG would have to file that assessment and plan before beginning construction. In comments submitted by its Pennsylvania office, the Audubon Society called Marcellus Shale development the "single largest threat" to Pennsylvania forest habitat.

CNYOG ripped into the comments produced by Earthjustice, which describes itself as a nonprofit environmental law firm. "These 'comments' were the product of an Internet campaign in which Earthjustice indicated that it would submit comments to the commission on behalf of persons who submitted their name and pertinent information on Earthjustice's website," the company said. "This
campaign, while producing an impressive number of 'comments,' also demonstrates the substantive weakness of the mass filing."
At the time of its comments, CNYOG said, only 37 of the thousands of letters gathered by the Earthjustice campaign were from residents of the three counties around the MARC I project. The company said the letters represented the general public's fear of the environmental impacts of hydraulic fracturing and other aspects of shale development, stoked by a "less-than-objective" description of the project on the Earthjustice website. CNYOG also said a number of letters were duplicates or their senders could not be identified, and "reflect the absence of any attempt at culling of obviously defective submissions."
Members of the Pennsylvania General Assembly, led by state Rep. Richard Mirabito, sent a letter to FERC expressing concerns about the project "on behalf of the tens of thousands of citizens that we represent."
"While natural gas drilling is already impacting the area," the lawmakers wrote, "we believe that construction of a 39-mile transmission pipeline as proposed in this project without an adequate environmental assessment is beyond what this region should be asked to bear and may cause irreparable harm." (CP10-480) i

\section*{9. EMIISSIONS:}

\section*{E.U. emissions show biggest annual increase in 20 years}

Published:Tuesday, October 11, 2011
The European Union, despite major gains in green initiatives, is about to set a record for the biggest yearly hike in carbon emissions in 20 years, according to preliminary data from the European Environment Agency.

Incremental economic recovery and an unusually cold winter, which caused consumers to heat their homes for longer, pushed 2010 emissions up by 2.4 percent from the previous year. The jump is the biggest annual increase since 1990.

Until now, the biggest increase was in 1996, when emissions from the 27-member union rose by 2 percent from 1995 levels. The increase last year follows a 7 percent drop in annual emissions in 2009 due to slowed industrial production from the recession and growth in renewable energy electricity generation.

The 15 E.U. countries with obligations under the Kyoto Protocol are largely on track to meet their obligations. Emissions have dropped by 10.6 percent since 1990, surpassing the pledge to cut levels by 8 percent between 2008 and 2012. Three of the countries -- Italy, Austria and Luxembourg - are falling behind in their reduction goals, however.

The E.U. bloc of 27 nations also has a separate plan to cut its emissions by 20 percent by 2020 compared to 1990 levels. It has already achieved a 15.5 percent decrease since 1990, but the European Environment Agency, an E.U. body based in Copenhagen, Denmark, says that more needs to be done.

Existing European plans "do not project enough emission reductions for the E.U. to meet its unilateral 20 per cent reduction commitment in 2020 ," said the agency. "Additional measures currently planned by member states will help further reduce emissions but will be insufficient to achieve the important emission cuts needed in the longer term" (Pilita Clark, Financial Times, Oct. 7). .- JP

\section*{Advertisement}

The Premier Information Source for Professionals Who Track Environmental and Energy Policy.
© 1996-2011 E\&E Publishing, LLC Privacy Policy Site Map


\title{
The EU Emission Trading Scheme: designed by committee \({ }^{1}\)
}

\author{
By Arnold Mulder
}

Ever since the EU Emissions Trading Scheme (EU ETS) came into effect on January 1st 2005, it has been surrounded by uncertainty. Although the scheme is intended as the most powerful weapon in the effort to reduce European carbon emissions, doubts about its effectiveness and feasibility have remained. In theory, 'the ETS should allow the European Union to achieve its emission reduction target under the Kyoto Protocol at a cost of below 0.1\% of GDP, significantly less than would otherwise be the case', according to the European Commission (2008). In practice, the efficiency and effectiveness of the ETS remain questionable.

\section*{The challenge to reduce emissions}

The European Commission aims to reduce 'domestic' carbon emissions by \(20 \%\) in 2020 compared to 1990. The EU ETS is the flagship in the EU's efforts to meet this goal. The scheme covers all sectors with substantial carbon emissions from point sources, such as the power, steel, iron, petroleum and gas sectors. Mobile sources of emissions (e.g. the transport sector) are not yet included in the ETS.

The fact that the ETS focuses on large, stationary and concentrated sources of carbon emissions is no coincidence. Reducing emissions from a few power plants is easier than reducing emissions from millions of cars. Because the large stationary sources are all covered by the ETS, a stricter reduction target is applied to these sectors than to sectors outside the emissions trading scheme. Effectively, the EU ETS sectors are expected to reduce their emissions by \(21 \%\) between 2005 and 2020, while sectors outside the scheme are projected to reduce their emissions by merely \(10 \%\). Together the reductions suffice to meet the \(20 \%\) goal in 2020 .

The emphasis on the sectors covered by the ETS underlines the key role of the emissions trading scheme: if the \(21 \%\) reduction target is not met, achieving the overall reduction target will be nearly impossible, because it would require a stronger reduction in sectors where emissions reduction are already more difficult or more costly to achieve. Therefore, meeting the ETS target is crucial.

\section*{Why cap and trade is assumed to be effective and efficient...}

Under the ETS, allowances are distributed to all the installations included in the scheme. A single allowance provides the owner the right to emit one tonne of \(\mathrm{CO}_{2}\) into the atmosphere. Because the number of allowances issued in a year can be set to a specific level, the scheme is assumed to be an effective means to reduce emissions. The level of

\footnotetext{
\({ }^{1}\) Published April 18 \({ }^{\text {th }}\), 2011, in European Energy Review, see http://www.europeanenergyreview.eu/site/pagina.php?id=2914\#artikel 2914
}
emissions is limited after all by the number of issued allowances. If companies fail to buy allowances when they exceed their emission limits, they will incur a high penalty. The penalty is set far above the actual market price for allowances, so cheating does not pay off.
By progressively reducing the number of issued allowances towards the desired level, the EU should be able achieve its 2020 reduction targets with great certainty. Companies will either have to buy allowances if they don't reduce their emissions sufficiently, or they will have to invest in low-carbon technologies to reduce their emissions. This is also assumed to be the most efficient mechanism to reduce emissions, as market forces will ensure that firms with the lowest-cost technology available will invest first. Thus, the emissions reduction target is achieved against the lowest possible cost.

If this is so, then why, as indicated above, do the efficiency and effectiveness of the ETS remain in doubt?

\section*{...and why the EU ETS is not}

The answer is that there is a big difference in how the scheme was designed in theory and how it works in practice. The actual design of the EU ETS is nothing like the stylized, effective and efficient trading scheme described above. With 30 national governments, various industries and lobby groups involved in the scheme, the actual design of the EU ETS is the result of a compromise between all stakeholders. This compromise has led to a sub-optimal design with several flaws which undermine the effectiveness and efficiency of the scheme. In fact, under the current regime the scheme is unlikely to incentivize substantial investments in low-carbon technologies until 2020.

A recent study (see Mulder and Bos, 2010) by the University of Groningen (RuG) and Dutch technological consultancy TNO shows that the probability of achieving the EU ETS reduction target is very low indeed.

Investments will only take place if allowances are in scarce supply or are expected to be in short supply in the near future. Otherwise there is no incentive to invest in emission reduction technology. However, the EU ETS suffers from a large oversupply of allowances.

According to the study by the RuG and TNO, on average, a total of 1.4 billion allowances are expected to be carried over to Phase III of the EU ETS which starts in 2013. The excess of 1.4 billion allowances will have been built up over the course of Phase II of the ETS (2008-2012) and is equivalent to approximately \(70 \%\) of the European demand for allowances in 2009. To put it in another perspective: the surplus would suffice to cover the Dutch demand for allowances for a full 16 years. As a result, allowances are not scarce, which minimizes the pressure on firms to reduce their emissions and puts downward pressure on the carbon price.

Starting in 2013 the number of allowances issued will be reduced by \(1.74 \%\) on an annual basis. However, this does not imply that the market will move from an annual surplus to
an annual shortage immediately. Although the annual surplus will decrease, on average the market is expected to remain in oversupply until 2020 under the current regime. As a result, if EU ETS policy remains unchanged, the total surplus is expected to grow from 1.4 billion by the end of 2012 to 2.1 billion in 2020.

\section*{Sources of oversupply}

The reason for the oversupply in the market is that the design of the EU ETS includes a number of regulations (loopholes) that allow for a gradual buildup of allowances over time. Three main sources of oversupply can be identified:

\section*{1. Banking of Allowances}

As of the beginning of Phase II in 2008, firms were allowed to bank their excess allowances. Before that time, during Phase I (2005-2007), allowances could only be used to offset emissions in a specific year and lost their function and value afterwards. The new rule implied that any allowances in excess of immediate demand could now be transferred to future periods and, as such, would hold their value over time. This change enhanced the tradability of allowances but it also meant that emissions were no longer limited to the number of allowances issued in a particular year.

This means that whereas in the past the European Commission could set annual emission levels that would gradually lead to the desired end target, now it can only control the cumulative number of allowances issued over the 13-year period (2008-2020). The result of this banking rule is that you get a so-called waterbed-effect in the market: lower emissions today allow for higher levels of emissions tomorrow. This makes the system vulnerable to sudden demand shocks. The recent economic recession provides a clear example. The level of emissions under the EU ETS fell by more than \(11 \%\) in 2009 and as a result companies were able to hoard around 250 million allowances in that single year alone. Over Phase II as a whole the recession is expected to add approximately 700 million allowances to the surplus.

With the banking arrangement in place, the ETS will remain vulnerable to demand shocks in the future. The waterbed-effect removes the ability for policymakers to steer the level of emissions in 2020 to a specific level.

\section*{2. The Linking Directive}

Another important source of oversupply is the Linking Directive. The Linking Directive allows companies to import extra allowances into the European emissions trading scheme. These allowances originate from two programs under the Kyoto protocol: the Clean Development Mechanism (CDM) and Joint Implementation (JI). Firms are allowed to use these allowances to offset their emissions on top of the allowances that they have already been granted under the scheme. The directive allows companies to raise the number of allowances in the scheme by a maximum of \(13.3 \%\).

In 2009 around one third of the potential of the Linking Directive was actually used. This resulted in an extra 83 million allowances that entered the EU ETS in that single year; adding approximately \(4 \%\) on top of the original cap. As the original cap of the EU ETS is set to decline starting in 2013, and the CDM and JI programs are further developed, the usage of the Linking Directive is likely to grow over time although the European Commission is planning to ban the usage of allowances from certain specific programs.

\section*{3. Leftovers from the New Entrants Reserve}

The New Entrants Reserve (NER) is the third significant source of oversupply. As the name implies, the allowances in the NER are reserved for new entrants into the EU ETS. For example, if a new power plant is built, allowances are assigned to this installation from the NER.

Five percent of the overall allowance cap is reserved for new entrants. If there are allowances left over in the reserve by the end of Phase II, member states are free to sell these on the market. As these allowances will not be covered by emissions, they will merely alleviate the pressure on incumbents who are able to buy them.

A considerable number of allowances is expected to be left over in the NER by the end of 2012. Estimates range from 180 million to 360 million allowances, depending on the actions of individual member states and the number of new entrants over the next two years. If member states decide to withdraw their surpluses instead of selling them on the market the problem could be eliminated. However, the surpluses represent an easy source of cash for governments with which they could fund other projects. Against a market price of \(€ 15\) per allowance, an excess of 180 million allowances would provide national governments with a total revenue of \(€ 2.7\) billion. The upshot is that national governments have an incentive not to act in the best interests of the trading scheme by selling off all remaining allowances in the reserve.

\section*{Phase III: lack of alignment further undermines the ETS}

Not only does this analysis indicate that there is hardly a basis for a strong and stable price incentive from the ETS, more importantly it shows that European carbon policy lacks internal consistency. The surplus is after all not the consequence of unforeseen circumstances but the direct result of elements that were deliberately introduced into the system, like the Banking Rule, the Linking Directive and the New Entrants Reserve. These are essentially political choices.

Unfortunately, the elements that undermine the effectiveness of the scheme are not limited to the second phase of the ETS. For example, an NER is also set up for the third phase (2013-2020). Although it is still too early to say whether there will be any allowances left over in the reserve by 2020, the European Commission has already reserved 300 million allowances as a means to fund projects related to innovative energy technology and carbon capture and storage (CCS). Hence, the European Commission is again alleviating the pressure on companies covered by the scheme by releasing more
allowances to finance other projects. Although support for the development of technologies like CCS is a necessity in order to reach long term emission reduction goals, the source of financing (allowances from the ETS) once again undermines the ETS Whereas a high demand for allowances is necessary to stimulate investments, continued oversupply until 2020 is a real possibility. With that in mind even the current price level of \(€ 15\) per tonne of \(\mathrm{CO}_{2}\) should be considered high, even in a few years' time.

\section*{Why a simple reduction of the cap is not the solution}

The way to solve the problem of large surpluses seems straightforward: reduce the number of issued allowances. Currently the European Commission plans to reduce the number of issued allowances over Phase 3 by 500 to 800 million allowances to correct for the effects of the recent economic recession. Such a move could increase the probability of achieving the emission reduction goal. However, in isolation, a reduction of allowances is still likely to be ineffective, because it would not fix any of the weaknesses of the ETS. The vulnerability to demand shocks, to the Linking Directive and to the NER is still there.

Policy measures should therefore first and foremost be focused on eliminating the weaknesses of the ETS. Policy alignment is the key here: eliminate the linking directive, stop using the NER as a financial instrument and eliminate any remaining allowances in the reserve. An agreement that would include these elements would constitute a major step forward. Unfortunately, such a far-reaching agreement is unlikely to be achieved given the number of parties sitting at the negotiation table.

\section*{Leave the market alone: why subsidies for wind energy are a bad idea}

But there is another problem as well. Even if we assume that the parties reach an agreement and do what is necessary to fix some of the main weaknesses of the current scheme, it might still not mean that the emission trading scheme is an effective and efficient method to reach the European emission reduction target.

The carbon market will only work efficiently (i.e. reach the target against the lowest possible costs) if the carbon price is reasonably stable, so companies can plan their investments accordingly. This will only happen if policy makers refrain from interfering with the market and limit their actions to providing a stable and coherent policy environment. In that case an emissions trading scheme could work.

In reality, the past five years have seen an unstable and unpredictable carbon price. In effect, the carbon market is not a real market, in which market forces determine the outcomes. Policy makers are constantly interfering and effectively trying to direct the market. If interfering meant that weaknesses were resolved, that would be a good thing. Yet, in practice, interference is often equal to either crisis management (e.g. repairing the damage of the recession) or providing substitutes for the market (e.g. by subsidizing certain forms of renewable energy).

The latter type of interference often goes unnoticed because the interference with the emissions trading scheme is indirect. For example, governments continually come up with new schemes and subsidies to stimulate the use of renewable energy sources and other low-carbon solutions. These subsidies improve the business cases for the companies involved. As a result they may invest in, for example, offshore wind energy sooner than they would have done otherwise. The problem is, however, that there already is a scheme in place that is intended to provide the same incentive to the industry: the ETS. If policy makers took the necessary steps to improve the functioning of the ETS, rising carbon prices would in time make the offshore wind park economically feasible by itself. A subsidy would not be needed and valuable tax payer money could be saved.

The argument, however, runs even deeper. Companies investing in offshore wind energy with the help of a subsidy do so earlier than they would otherwise do, thereby saving allowances that they would otherwise use to cover emissions. These allowances can now be sold on the market for other companies to use. The companies that buy the excess allowances can postpone their own investments. As a result, policies that speed up the carbon reduction effort in one country effectively reduce the pressure on firms in other ETS member states. On balance, the subsidy does not add anything to the overall reduction effort, but is merely a costly substitute for reductions that would have taken place anyway.

The subsidy for wind energy is just one example of how policies on a local or national (or even European) level work as a substitute to the ETS, with the effect of undermining the allowance price and efficiency of the scheme. Emission norms, regulation, taxes and any other measure that would 'speed up' the reduction efforts of industries covered by the scheme would have a similar effect.

To a certain extent policy makers are right when they stress the need for other incentives. The ETS is not providing the type of strong and stable incentive that should be expected from it, so it is understandable that they look for other methods. As long as the ETS is in place, however, policy makers should leave the market free to work, refrain from introducing other incentives and focus on alignment of the ETS to make the ETS an effective and efficient weapon in the fight against carbon emissions.

The alternative is to abolish the ETS altogether and switch to another incentive scheme. An example of an incentive scheme that could bypass all of the mentioned problems would be a progressively rising carbon tax. Although the government would have no direct control over emission levels and a tax is generally assumed to be less efficient than a market mechanism, it would provide stability, certainty and feed into the general expectation of rising carbon prices. As a result, it would create the type of investment climate that could kick start the investments needed to achieve the 2020 reduction target. The monitoring systems are already in place and allowances that have already been issued would not have to lose their value or function. Most importantly, however, 'allowance surplus' would become a thing of the past. Governments have to choose: either allow the market to do its work, or introduce a tax without control over the
emission levels. But interfering in the market with projects and measures that undermine the CO 2 price is not sustainable at any rate.

Arnold Mulder (1985) studied International Economics and Business and is now a PhD Candidate at the University of Groningen. His doctoral thesis focuses on the CCS value chain and incentive systems, with specific attention to the European Emissions Trading Scheme (EU ETS).

\section*{References}

European Commission (2008) "The EU Emissions Trading Scheme", Office of the Official Publications of the European Communities

Mulder, A.J., Bos, C.F.M. (2010) "Current design of EU ETS clashes with its own objectives", EDI Quarterly, vol. 2 issue 2, pp. 12-16

\title{
Pa. chapter of Sierra Club calls for moratorium on new Marcellus drilling permits
}

\section*{September 13, 2010}

\section*{By Bryan Schutt}

To provide time for regulations to catch up to drilling operations, the Pennsylvania Chapter of the Sierra Club is pushing state lawmakers to enact a moratorium on new Marcellus Shale permits.

With thousands of permits already issued, State Conservation Chair Thomas Au said a pause on new permits would not stop activity. It would, however, slow down an industry that could leave the state crippled unless proper oversight is adopted, Au said. "There's a need to put a stopgap hoid on [new permits] until the state gets back together to pass legislation to protect safety and water," he said.

Although Gov. Edward Rendell has indicated that he will not sign a moratorium proposal, Au said the Sierra Club is intent on taking up the proposal with the new governor, who will be elected in November, as well as in the state's General Assembly.

But a moratorium is not the only demand of the club, which is unsatisfied with the lack of action on many legislative proposals. "The problem is, there are a number of bills that the state Legislature has failed to act on," Au said.

The Sierra Club, which has more than 23,000 members in Pennsylvania, supports new, tougher standards for well design and favors disclosure of hydraulic fracturing chemicals. The group also wants to ensure that no more drilling on state lands occurs, and it is opposed to "forced pooling." Additionally, the Sierra Club strongly favors a severance tax, which the Legislature has vowed to pass by Oct. 1.
"There are various proposals before the House on the severance tax, and whatever number the General Assembly comes up with ... we would like some portion to go to local governments, as well as to environmental conservation funds to deal with the long-term problems created by gas drilling," Au said.

In a Sept. 7 release, Dennis Winters, chairman of the Pennsylvania Chapter of the Sierra Club, said the costs of shale drilling in the state are already mounting. "Drilling pads and wastewater pits scar our landscapes. Heavy rigs damage our roads. Billions of gallons of water are withdrawn from our streams. Pipelines deface our natural areas. Operational errors contaminate our land and water and air," Winters said in a statement. "In Pennsylvania communities, people are being injured and killed from accidents; communities and towns are paying for additional services; and local emergency personnel are dealing with fires and toxic spills."

Jeff Schmidt, state chapter director for the Sierra Club, said those concerns highlight the need for action at the state level. "The legislative stalemate only hurts Pennsylvanians," he said. "Unless the Pennsylvania legislature acts now, Pennsylvania will suffer reckless environmental degradation; loss of drinking water; destruction of our precious state and national forests; increased air pollution; in-
creased exposure to toxic chemicals used in the drilling process and to the inherent toxic chemicals in natural gas."

Au said the Sierra Club still supports natural gas as a bridge fuel, but it wants extraction to be environmentally responsible. "These are not mutually exclusive objectives. I believe the Sierra Club always said that natural gas drilling has to be done safely," Au said. "There is plenty of natural gas available right now, so there's no need for us to rush out and drill every hole in the ground that we can drill. We need to take a step back and look at safety and environmental concerns." \(i\)

\section*{Drill Fee Proposed for Pennsylvania}

By Kris Maher

Pennsylvania Gov. Tom Corbett proposed a fee on natural-gas drilling of as much as \(\$ 160,000\) a well in an effort to find a middle ground between public support for assessing drillers in the booming Marcellus Shale basin and a campaign pledge not to impose taxes.

If passed by the state legislature, the recommendation would generate an estimated \(\$ 120\) million in the first year, most of which would be kept at the local level to help pay the cost to regulate drilling and to repair roads and bridges. Every other gas-drilling state already imposes a fee on wells or a tax on the value of gas that is extracted.

The governor's proposal also includes new requirements that would keep wells farther from streams and water wells. Environmentalists are concerned that the process of extracting shale gas, which involves pumping water and chemicals underground at high pressure, could contaminate surface and drinking water.
"As the number of wells grows, so will the revenue," said Mr. Corbett, a Republican, who linked the industry's growth to the state's economic future. "We are going to do this safely, and we're going to do it right, because energy equals jobs."

Under the governor's plan, about one-quarter of the well fees would go to state agencies like the Department of Environmental Protection and the rest to local communities. Some state lawmakers suggested they may push for higher fees or for more of the money to go to the state.

Democrat Jay Costa, the state Senate minority leader, said the governor's recommendations "fall woefully short." in terms of revenue and the amount that is going to the state. Some Republicans, who have a majority in both the Senate and House, are also pushing for more drilling revenue. GOP state Rep. Thomas Murt plans to introduce a bill Tuesday that includes a \(4.9 \%\) tax on the gross value of the gas at the wellhead, rather than a fee. His bill would dedicate \(29 \%\) of revenue to local governments, \(27 \%\) to state environmental programs and \(44 \%\) to state programs including drug rehabilitation.

Senate President Pro Tem Joe Scarnati said he hopes to pass a bill out of the Senate by the end of October.

The gas industry indicated it would push for legislation patterned after the governor's proposal. "The governor's plan...reminds us that the most significant and long-term benefits of clean-burning natural gas will be achieved only through competitive policies that allow the industry to flourish," said Kathryn Klaber, president of the Marcellus Shale Coalition, a trade group.

Sharon Ward, director of the Pennsylvania Budget and Policy Center, a liberal think tank, said: "Gov. Corbett has proposed a small, limited fee that fails to capture for Pennsylvanians the true worth of this vast natural resource, and fails to fully offset the short and long-term damage...by the industry."

Paul King, president of the Pennsylvania Environmental Council, called the governor's recommendations "a good start." Many of the state environmental rules related to drilling are nearly 30 years old.

A poll conducted last week by Quinnipiac University found that 64\% of Pennsylvania residents favor a new tax on natural-gas drillers in the Marcellus, while \(27 \%\) opposed a tax. The telephone survey of 1,370 registered voters conducted between Sept. 21-26 had a margin of error of \(2.7 \%\).

Other states, including Texas, Oklahoma, Arkansas and West Virginia, have taxes based on the value or volume of gas produced at a well site. Mr. Corbett, who was elected last year with strong gas-industry support, has said such a tax on drilling would turn away drillers and jobs.

\section*{EU Weighs Pullback on Cutting Emissions}

Commission's Energy Department Urges EU to Reconsider Energy Transition Absent a Broader Emissions Deal

By Alessandro Torello
BRUSSELS-The European Union is for the first time clearly questioning whether it should press ahead with long-term plans to cut greenhouse-gas emissions if other countries don't follow suit, in what could herald a significant policy shift for a region that has been at the forefront of advocating action to combat climate change.

In a document reviewed by The Wall Street Journal, the European Commission's energy department says the EU should consider whether the region should seek to switch its domestic energy base away from carbon-emitting sources in the absence of a global climate-change deal.
"If coordinated action on climate among the main global players fails to strengthen in the next few years, the question arises how far the EU should continue with an energy-system transition oriented to decarbonization," the commission says in a draft of its Energy Roadmap 2050. The document is an effort to look at how the EU energy and climate picture would look in 2050, according to different scenarios.

To be sure, the EU will stick to its end-of-decade greenhouse-gas reduction goals and the paper could change before it is published later this year. Even if it doesn't, the document would only be the opening salvo in what would be a fiercely contested debate. Many member states are strongly committed to slashing emissions, and the climate-change department within the Commission, the EU's executive, would likely resist any attempt to water down the EU's green credentials. There has been frequent friction between the energy and climate-change departments in Brussels.

The EU has long been recognized as a global leader in the fight to slash carbon emissions.

EU law mandates that the 27 countries cut their CO2 emissions by \(20 \%\) on average by 2020, compared with 1990 levels, and policy after that is being drawn with the assumption of bringing that cut to between \(80 \%\) and \(95 \%\) by 2050. The EU has lobbied hard to get a successor for the Kyoto treaty, the instrument that regulates carbon emissions internationally and expires next year.

A spokeswoman for Energy Commissioner Guenther Oettinger declined to comment on the content of the document.

The EU's doubts come ahead of a climate-change summit in Durban, South Africa, which is thought to be unlikely to deliver a significant global climate-change deal.

The current focus seems to be on salvaging the minimum commitments that have driven global action since the Copenhagen summit's failure in 2009.

In the past, the EU has rejected the idea that inaction by others was a reason to shelve its goals. But in light of the lack of international progress, there had been signs of a debate within the EU over how hard
the region should push on the issue. A meeting of EU environment ministers in Luxembourg last week agreed to commit internationally to new CO2-reduction targets only if there is a clear signal in Durban that other countries would follow suit.

The draft document says there are many benefits in pushing ahead with action to reduce carbon emissions. The commission says this will drive energy-infrastructure investments that will be needed anyway and reduce the region's external energy dependence.

Working on the assumption of a global deal, the document shows the commission urging member states to set out clear strategies for cutting emissions beyond 2020. The commission says the longer the wait, the higher the cost.
"Today there is an inadequate direction as to what should follow the 2020 agenda. This creates uncertainty among investors, citizens and governments," the document reads.

But the document is unambiguous about the risks if Europe acts alone.
"It has to be seen clearly that there are risks associated to unilateral EU action," the commission says in its draft. "There is a trade-off between climate-change policies and competitiveness. Europe cannot act alone in an effort to achieve global decarbonization," the paper says.

The commission is particularly worried that EU industry would lose competitiveness in the battle for global markets against companies from other parts of the world as its costs would be higher. EU companies would likely pay higher electricity prices because clean power production would be more expensive, while some would also have to pay for their own CO2 emissions, or face big investments to reduce them.

In a May 2010 study, the commission estimated that the \(20 \%\) CO2 cut by 2020 would cost \(€ 48\) billion a year ( \(\$ 66.3\) billion).

Schram-Appendix A


츚




























\section*{}





























 1




















 770000000 H
\(\qquad\)


























豚
g

\section*{8 名品}

Discount Rate：























\(\qquad\)
\(\qquad\)



















































－－















































 ..... 
 ..... 
 ..... 
 ..... 
 ..... 菏装紫
 ..... 
 ..... 宮咢菅
 ..... 
 ..... 器䓂咢
 ..... 
 ..... 
 ..... 号萃品
 ..... 品莏荷
 ..... 
 ..... 
 ..... 䓵咢藻
 ..... 品茓咢
 ..... 000




\section*{ \\  \\ }


















第

\section*{\＃}

累












































































\(\qquad\)
\(\qquad\)
\(\qquad\)

















\section*{}






























\section*{䠉}
\％̈ㅜํ
罧
䜤
：쿠
巠
：
000000000000000
界
000000000000000
界
ม
쿠
然
มี
\(0^{000000000000000}\)
g
률
然
벽

```



```
```ョ
```



商

y

$8{ }^{\circ}{ }^{\circ}$

言 영
葛

        00000000000000
    
    g
    
    潩
    $\qquad$
:
000000000000000

































 	筞咢咢
	永
 	根
 	咢
 	筞
 	\％
	怘
	䓪管
 	F嵒
$\bigcirc$	高照䓫
000000000000000000000000	品亳吕
0000000000000000000	m $\underbrace{3}$
0000000000000000000000	
000000000000	000
	\％\％\％\％

 ..... 容
 ..... 
 ..... 管咢哭
 ..... 
 ..... 
 ..... ตin
 ..... 骨骂咢
 ..... 
 ..... 受腎等品
 ..... 突等馹
 ..... 
 ..... 
 ..... 器臨咸
 ..... 受葢等
 ..... 
 ..... 
侖管盛
受品亳コロゴ











Discount Rate:

解  

























$\qquad$ aี

8 8.






## 

## 



## 



## 










## 





 000000000000000000580
$\qquad$



















































高愛嵒
淘
竞
解童
憵


Hit
新震
䀧亳

明量
H
暗量倩青管
部新犕












 ）













表

号品



























 $\rightarrow$








 Ithal Revenue Renulitements cumplative Delte
No Retirements






 zo


























## ：

























苛

움


















## 



## 




































$0000000000000000000000{\underset{\sim}{3}}^{0}$













䀧期期



ต 배ำ







0000000000000000000000 㯏
$0000000000000000000000 \frac{\mathrm{~g}}{\boldsymbol{f}}$





菏		




















## 密

붗
第
苑
뿞
第
영
뭉
휵
뿍
尔
困
篹
费
꿀
：
固
ซ
훔

## I

\％
界
朔

## 1

$\qquad$
















 M
$\qquad$
8
000000000000000

d





$\frac{\text { Iotal Revenua Requirements Dolta }}{\text { No Retirements }}$
Retre $T$ T
Retremand bil-2-
Retire TY Gr3 and CR4
Retire TY GR3 CR4 and CR6Retire T¢ GR3 $\mathrm{CR4} 4 \mathrm{CR5}$ and $\mathrm{BR1-2}$
Retire TY $¢ R 3 \mathrm{CR}$ and GH 3
Retire TY GR3 CR and GH1 Retire TY GR and CR
Retlre TY Gr Cr bri-2 und MC1-2
Retre Trand gr
Retre TY: Gff and Cra
Retre TY GR and Crs
Retie TY GR and cas
Retire TY GR CR and MCA
Retire TY GR CR and TCI
Retre TY GR CR and GM4
Retire TY GR Cr and Mc3
Retire TY GR Cf and GH 2
Reitre TY GR CR and MCL-2









，㘣是界界茼年园 g兑嫘易胃䏛票曾瑶采罟

然

혁
a
0000000000000
붕
畕
00000000000000沓
：
0000000000000
园
：
0000000000000
g
g
0000000000000
สัํํ
毣
000000000000000000000000000000000000
영
罗
0000000000000
㘶
：
0000000000000
g
g
g
g
\％${ }^{\circ}$
00000000000000000000000

```
 00000000000000
```

    000000000000000000000000
    0000000000000
        0000000000000000000000
    
    000000000000000000000000000000000000
    .
    0000000000000000000000000000000000
    00000000000000000000000000000000
    00000000000000
    
00000000000000
00000000000000000000000

    00000000000000000000000000000000000000
    0000000000000000000000000
    0000000000000
    000000000000000000000000000000000
0000000000000
00000000000000
0000000000000000000000


[^2]혁
g

\％
园

형
等
มี
g
：
园
000000000000000000000000000000
：
00000000
a
000000000000000000000000000000
羄
00000000000000000000000000000
훙
00000000000000000000000000000

000000000000000000000000000000
桨
000000000000000000000000000000
：
000000000000000000000000000000
g
gion00000 000000000000000000000000
s
100000000000000000000000000000
采
g
00000000000000000000000000000000 g్g

：
䙷
思
：
$\#$
혁
复
졍
易
解
罝
等
思
筧
g
畧
ม
g
g
ส
Discount Rate：
-2


00000000000000000000000 00000000000000000000000 00000000000000000000000
$\qquad$

$$
00000000000000000000000
$$



00000000000000000000000


00000000000000000000000


00000000000000000000000

0000000000000000000000

00000000000000000000000

00000000000000000000000

0000000000000000000000

0000000000000000000000

000000000000000000000 0000000000000000000000

00000000000000000000000
$\qquad$1
（10000000000000000000000000

00000000000000000000000000
0
00000000000000000000000000

궁 0000000000000000000000000
0
00000000000000000000000000

気
00000000000000000000000000
古
00000000000000000000000000
q
0000000000000000000000000
易
0000000000000000000000000
䍝
000000000000000000000000
묵
0000000000000000000000000
先
000000000000000000000000000
g
0000000000000000000000000
＊
200 000000000000000000000000
g
000000000000000000000000
管
0000000000000000000000000

$0^{000} 0000000000000000000000$
思
gio 00000000000000000000000






                    P
    


$\underset{\sim}{\text { H }} \underset{\sim}{\text { N }} \underset{\sim}{\text { N }} \mathrm{N}$


$\underset{\sim}{N}$





$\infty \quad 6$ in





Retirement Cost	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
All Units.	0	0	0	0	0	0	2100	0	0	0	0
2\% Escaiation Rate											
Unit Costs (\$000)											
BR1		3,816	4,811	3,969	4,049	4,130	4,212	4,296	4,382	4,470	4,559
BR2		6,633	7,160	7,253	7,398	7,546	7,697	7,851	8,008	8,168	8,331
BR3		15,885	20,876	14,904	15,202	15,506	15,816	16,132	16,455	16,784	17,120
CR4		14,372	9,218	12,029	12,269	12,515	12,765	13,020	13,281	13,546	13,817
CR5		11,842	9,889	12,791	13,047	13,308	13,574	13,845	14,122	14,405	14,693
CR6		10,666	11,619	10,173	10,376	10,584	10,795	11,011	11,231	11,456	11,685
GH1		17,829	19,141	17,966	18,325	18,691	19,065	19,447	19,835	20,232	20,637
GH2		12,225	18,498	13,429	13,698	13,972	14,251	14,536	14,827	15,124	15,426
GH3		17,961	13,501	12,475	12,724	12,979	13,238	13,503	13,773	14,049	14,330
GH4		11,533	13,496	12,105	12,347	12,594	12,846	13,103	13,365	13,632	13,905
GR3		4,270	5,792	4,360	4,447	4,536	4,627	4,719	4,813	4,910	5,008
GR4		7,338	6,924	8,633	8,805	8,982	9,161	9,344	9,531	9,722	9,916
MC1		11,892	17,333	12,669	12,923	13,181	13,445	13,714	13,988	14,268	14,553
MC2		16,179	11,941	15,201	15,505	15,815	16,131	16,454	16,783	17,118	17,461
MC3		18,313	14,238	17,221	17,566	17,917	18,275	18,641	19,014	19,394	19,782
MC4		16,531	18,981	17,245	17,590	17,942	18,300	18,666	19,040	19,421	19,809
TC1		17,205	15,170	17,403	17,751	18,106	18,468	18,837	19,214	19,598	19,990
TY3		410	416	418	427	435	444	453	462	471	480



Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597


Retirement Cost	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
All Units	0	0	0	0	0	0	0	0	0	0	0
2\% Escalation Rate											
Unit Costs (\$000)											
BR1	4,651	4,744	4,838	4,935	5,034	5,135	5,237	5,342	5,449	5,558	5,669
BR2	8,498	8,668	8,841	9,018	9,199	9,383	9,570	9,762	9,957	10,156	10,359
BR3	17,462	17,811	18,167	18,531	18,901	19,279	19,665	20,058	20,460	20,869	21,286
CR4	14,094	14,375	14,663	14,956	15,255	15,560	15,872	16,189	16,513	16,843	17,180
CR5	14,987	15,286	15,592	15,904	16,222	16,546	16,877	17,215	17,559	17,910	18,269
CR6	11,919	12,157	12,400	12,648	12,901	13,159	13,423	13,691	13,965	14,244	14,529
GH1	21,050	21,471	21,900	22,338	22,785	23,240	23,705	24,179	24,663	25,156	25,659
GH2	15,735	16,049	16,370	16,698	17,032	17,372	17,720	18,074	18,436	18,804	19,181
GH3	14,616	14,909	15,207	15,511	15,821	16,138	16,460	16,790	17,125	17,468	17,817
GH4	14,183	14,467	14,756	15,051	15,352	15,659	15,973	16,292	16,618	16,950	17,289
GR3	5,108	5,210	5,314	5,421	5,529	5,640	5,753	5,868	5,985	6,105	6,227
GR4	10,115	10,317	10,523	10,734	10,949	11,167	11,391	11,619	11,851	12,088	12,330
MC1	14,844	15,141	15,444	15,753	16,068	16,389	16,717	17,051	17,392	17,740	18,095
MC2	17,810	18,166	18,530	18,900	19,278	19,664	20,057	20,458	20,867	21,285	21,710
MC3	20,177	20,581	20,993	21,412	21,841	22,278	22,723	23,178	23,641	24,114	24,596
MC4	20,205	20,609	21,021	21,442	21,871	22,308	22,754	23,209	23,674	24,147	24,630
TC1	20,390	20,798	21,214	21,638	22,071	22,512	22,962	23,422	23,890	24,368	24,855
TY3	490	500	510	520	530	541	552	563	574	586	597

Unit Costs (\$000)











	$\vec{\theta}^{\circ}$




,
$\stackrel{\rightharpoonup}{d}$
$\stackrel{9}{0}$뮤N00000믐
2010
Fixed O\&M $\frac{5 / \mathrm{xr}}{3,322,0} \mathbf{1 4 1 , 0}$ ..... 4,309,000
150,000
Year \$:
సे
Escalation Rate: 뎣

중 둥 둥 웅 둥














 ลे
 a
苞 Year Equipment
2014 PJFF／PAC
2014 SAM Mitigation 2014 PJFF／PAC 2014 SAM Mitigation 2015 PJFF／PAC 2014 PJFF／PAC 2013 SAM Mitigation 2014 PJFF／PAC
 2015 PJFF／PAC
2013 SCR Turn－D 2013 SAM Mitigation 4
$\frac{4}{2}$
$\frac{4}{2}$
4
$\frac{4}{2}$ 2014 SCR Turn－Down
 2015 Combined $1 \& 2$ FGD
2015 PJFF／PAC
2015 SAM Mitigation

 2015 SAM Mitigation | 0 |
| :--- |
| 0 |
|  |

2015 PJFF／PAC 2013 SAM Mitigation 2014 FGD 2014 PJFF／PAC 2014 SAM Mitigation
 2015 PJFF／PAC 0
8
0
0
0
0
0
0宸

 2016 PAC Injection
2016 SCR
2016 WFGD


皆 0
0
3
3
0
0
0
 8080
0.8
0
0
0
0
0
$\square$


		On Rate:	2\% Year	2010												
	Fixed O\&M															
		Month	Year Equipment	\$/yr	$\underline{2023}$	2024	$\underline{2025}$	2026	2027	2028	$\underline{2029}$	2030	2031	$\underline{2032}$	2033	2034
GR	GR3	1	2016 CDS-FF	3,322,000	4,297,361	4,383,308	4,470,975	4,560,394	4,651,602	4,744,634	4,839,527	4,936,317	5,035,044	5,135,744	5,238,459	5,343,229
GR	GR3	1	2016 PAC Injection	141,000	182,399	186,047	189,767	193,563	197,434	201,383	205.410	209,519	213,709	217,983	222,343	226.790
GR	GR4	1	2016 SCR	0	0	0	0	0	0	0	,	0	0	0	0	0
GR	GR4	1	2016 CDS-FF	4,309,000	5,574,151	5,685,634	5,799,347	5,915,334	6,033,640	6,154,313	6,277,399	6,402,947	6,531,006	6,661,626	6,794,859	6,930,756
GR	GR4	1	2016 PAC Injection	150,000	194,041	197,922	201,880	205,918	210,036	214,237	218,522	222,892	227,350	231,897	236,535	241,266








 N N N N











呆
N
合 $\qquad$
 $\circ$
2040
$\mathbf{5}, 017,343$
255,402 




Year
송 웅 둥 정 뚱

完完品		
		帤呂号喿号
		骂受守呝
		焎品
各	受	묵
	这	 


 


 
（



 
 
 
 
 
 
 
 ..... 婩声完品品
 哃品哙品
镸 受等管 品侖总
 ..... 哭品
茄 品몄름
另
号


	守出	$\stackrel{\rightharpoonup}{6}$	
		\％\％	辱
		¢	
		$\propto$	
		N	
兌 둣		$\cdots$	
式总隠		E	
극웅	かめ合合式	¢	
号		$\infty$	
$\stackrel{9}{\text { a }}$		$\pm$	
$\stackrel{\sim}{\text { ® }}$		8	
－		冎	
号	号示芢号号号	$\cdots$	$\frac{\times}{x}$
～～～	$\underset{\sim}{\ddagger} \underset{\sim}{\sim} \underset{\sim}{\sim}$	$\stackrel{\square}{7}$	
$\underset{\sim}{\text { J }}$	억육 ⿹ㅓㄱ	ત̃	苞
$\stackrel{\sim}{\sim}$		$\stackrel{7}{7}$	
N゙	第品	－	3 0 0
$\stackrel{8}{8}^{\text {号 }}$	＊	\％	U N U $\sum_{i}^{\prime}$ U
$\begin{aligned} & \text { 亳 } \\ & \text { ت0 } \end{aligned}$			$\begin{aligned} & \text { än } \\ & \text { a } \end{aligned}$















䯩票等总
울욱
충
$\stackrel{-7}{\stackrel{7}{4}}$
咅
䔍  芌

兌萿吕 

















芌




























忍


高 
帯 ..... 
志 品出品

ざ 

뭄 

合○



菏夺 M内


䔍 
육
す。







[^3]

-iन नincin in in	
  荧	

 
哭
 ..... 
 ..... 
 ..... 
 ..... 
 

 ..... 
 ..... 
 
 ..... 
흘
学










商 000000000000 足


总

荢
든
荡



\$000																				
Station	Unit	Capacity	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
BR	BR1	101	0	0	0	553	743	703	668	635	606	577	548	519	491	462	433	413	40	393
BR	BR2	167	0	0	0	915	1.228	${ }^{1.163}$	1,104	1.050	1,002	954	907	859	811	764	716	684	666	649
BR	BR3	416	0	0	0	2.279	3.060	2.897	2.749	2,616	2,496	2,377	2.258	2.140	2.021	1,902	1.784	1,703	1,660	1,617
CR	CR4	155	0	0	0	980	1.582	1,494	1.413	1,339	1,269	1,201	1.132	1,064	996	927	859	806	770	735
CR	CR5	168	0	0	0	1,062	1.715	1,619	1.532	1,451	1,376	1,302	1.227	1,153	1,079	1,005	931	874	835	796
CR	CR6	240	0	0	0	1.518	2.449	2.313	2.188	2,073	1.965	1.860	1,754	1,697	1.541	1,435	1.329	1.249	1,193	1.137
GH	GH1	475	0	0	0	1,462	1,954	1,856	1,767	1,686	1,611	1.540	1.468	1.397	1.325	1.254	1,183	1.111	1,062	1.035
GH	GH2	484	0	0	0	1,489	1.991	1,891	1.800	1.718	1.642	1.569	1.496	1,423	1.350	1,278	1,205	1,132	1,082	1.055
GH	GH3	480	0	0	0	1,477	1,975	1.876	1.786	1,703	1,628	1,556	1,484	1.411	1,339	1,267	1,195	1,123	1.073	1.046
GH	GH4	479	0	0	0	1.474	1.971	1,872	1,782	1.700	1.625	1,553	1.481	1,409	1,337	1.265	1,193	1,121	1.071	1.044
GR	GR3	68	0	0	0	586	837	792	751	713	679	645	611	577	544	510	476	452	438	${ }^{423}$
GR	GR4	95	0	0	0	819	1.169	1,106	1,049	996	948	901	854	807	759	712	665	631	611	591
MC	MC1	303	0	0	0	1,215	1.774	1,682	1.598	1,521	1,449	1,380	1.311	1,242	1,173	1,103	1,034	965	915	882
MC	MC2	301	0	0	0	1,207	1.762	1,671	1,588	1.511	1.440	1,371	1.302	1,234	1,165	1.096	1.027	959	908	877
MC	MC3	391	0	0	0	1,568	2,289	2.171	2,063	1,963	1,870	1,781	1,692	1,602	1.513	1.424	1,335	1,245	1,180	1.139
MC	MC4	477	0	0	0	1.913	2,792	2,648	2.516	2.394	2,281	2.172	2.064	1,955	1.846	1.737	1,628	1,519	1.440	1,389
TC	TC1	383	0	0	0	770	1.008	958	912	871	833	797	760	724	688	652	616	579	555	542
Tc	TC2	549	0	0	0	1,104	1,445	1,373	1,307	1,248	1.194	1,142	1.090	1,038	986	934	882	830	795	777
TV	T/3	71	0	0	0	586	837	792	751	713	679	645	611	577	544	510	476	452	438	423
		brwater	0	0	0	3,747	5,032	4.763	4.521	4.302	4,104	3.908	3,713	3.518	3,323	3.128	2,933	2,800	2.729	2,659
		CRWater	0	0	0	3,560	5.746	5.427	5,134	4,863	4,611	4,362	4,113	3,865	3,616	3,367	3.118	2,929	2.798	2,668
		mCWATER	0	0	0	5,902	8,617	8,173	7.765	7,389	7.040	5,704	6,368	6,032	5.696	5,361	5.025	4,689	4,443	4,287
		TCWATER	0	0	0	1,874	2,453	2,331	2,220	2,119	2,026	1.938	1,850	1,762	1.674	1,586	1,498	1.410	1,350	1.319
		ghwater	0	0	0	5,902	7,892	7,495	7,135	6.806	6.505	6,217	5,928	5,640	5.352	5.063	4,775	4,487	4,288	4,180
		grwater	0	0	0	1,405	2,006	1,898	1.799	1.709	1,627	1.546	1.465	1,384	1.303	1,222	1,141	1,083	1,049	1,015


Station	Unit	Capacity	2029	2030	2031	2032	2033	2034	2035	2036	2037									
${ }^{\text {BR }}$	BR1	101	382	372	361	351	340	330	320	309 309	299	$\begin{array}{r}2038 \\ 288 \\ \hline\end{array}$	2039	2040	${ }_{2}^{2041}$	2042	2043	2044	2045	2046
${ }^{\text {BR }}$	${ }^{\text {BR2 }}$	167	632	615	597	580	563	546	528	309 511	299	288	${ }_{459}^{278}$	267	257	247	${ }^{236}$	${ }^{226}$	215	205
${ }^{\text {br }}$	BR3	416	1.574	1.531	1,488	1,445	1,402							442	425	408	390	373	356	339
CR	CR4	155	699	663	627	591	1,0	1.0	1,36	1,273	1.230	1.187	1,144	1,101	1,058	1.016	973	930	887	844
CR	CR5	168	757	718	679	640	0	0	0	0		0	0	0	0	0	0	0	0	0
CR	CRG	240	1,082	1.026	970	915	0	0	0	0	0	0	0	0	0	0	0	$\bigcirc$	0	0
${ }^{\text {GH }}$	GHI	475	1.008	982	955	928	901	875	848	821	794	767	741	714	687	${ }^{\circ}$	$\stackrel{0}{634}$	$\bigcirc$	0	0
GH	GH2	484	1,028	1,000	973	946	918	891	864	837	809	782	755	${ }_{727}$	${ }_{700}^{68}$	660	634	607	80	3
${ }^{\text {GH }}$	¢H3	480	1,019	992	965	938	911	884	857	830	803	776	748	721	694	667	${ }^{646}$	${ }_{6}^{618}$	591	564
$\mathrm{GH}^{\text {d }}$	GH4	479	1,017	990	963	936	909	882	855	828	801	774	747	720	693	666	${ }_{6}^{640}$	${ }^{613}$	586	559
GR	GR3	68	409	395	380	366	352	337	323	309	294	280	266	51	63			612	585	558
GR	684	95	571	551	531	511	491	471	451	431	411	391	371	351	${ }_{3}^{237}$	0	0	0	0	0
MC	MC1	303	850	818	786	754	722	690	658	626	594	562	530	${ }^{351}$	${ }^{31}$	0	-	0	0	$\bigcirc$
mC	MC2	301	845	813	781	749	717	686	654	622	590	558	526	0			0	0	0	0
MC	MC3	391	1,097	1,056	1,015	973	932	891	849	808	76	725	684	0	0	0		0	0	0
MC	MC4	477	1,339	1,288	1,238	1,187	1,137	1,086	1,036	986	935	885	834	0	0	0	0	0	0	
TC	TC1	383 549	529 759	517	${ }_{7} 523$	491	${ }^{479}$	466	453	${ }^{441}$	428	415	403	0	377	364	352	339	326	314
TY	TY3	71	409	395	380	366			650 323	${ }_{309}^{632}$	${ }_{213} 6$	595	577	559	541	522	504	486	468	450
								337	323	309	294	280	266	251	237	0	0	0	0	0
		brwater	2,588	2.517	2.447	2.376	2,305	2,235	2,164	2,094	2.023		1.882	1.811	1740					
		crwater	2,537	2.407	2,277	2,146	0	0	0	0	0	0		0	0	0	1,599	1.529	1,458	7
		mCwater	4.131	3,976	3.820	3,664	3.508	3,353	3,197	3.041	2.886	2,730	2.574	0	0			0	$\bigcirc$	0
		tcwater	1,288	1.258	1,227	1,196	1,165	1.134	1,103	1,072	1,041	1.010	979	949	918	87	5	0	0	0
		GHWATER	4,072	3,964	3.856	3.748	3.640	3.531	3,423	3.315	3,207	3,099	2,991	2.883	779	886	858	825	794	763
		grwater	980	946	912	87	843	809	774	740	706	671	637	603	568	0	2.58	2,450	2,342	2,234


兌 0000000000000000000	
荅 0000000000000000000	000000
会0000000000000000000	000000
吕	000000
会 0000000000000000000	000000
$\text { 总 } 0000000000000000 \text { స్ サio }$	$000{\underset{H}{i n}}_{0} 0$
	$000 \underset{\text { N }}{0} 0$
No Noo	$000 \times \infty$
$\text { 莒 } 0000000000000000 \text { 呙思 }$	000 g 00
	.
	茳

## 







式

미징


웅


뿡

쿡

믐




## $\stackrel{\rightharpoonup}{d}$


 뭉
 Na minhmannmon















 $\underset{\sim}{C}$




 뎅

 $\sum$








## 


 영
 （ 륭

## 할

## 

## 

흉

## 

 킁
















##  







## 
















go


멸


M




敛

웅
응

E
剛


앙



융


융


 
 
 
 ..... 
 ..... 
 
 ..... 
 






















药



No Retirements	2,987,8	18	3,203,297	3,290,340	3,297,676	3,356.737	3,480,390	3,589,844	3.666,273	3,703,679	3,761,291	3.823,836	3,814,175	3,932.779
Retire TY	2.982,627	3.126,986	3,232,640	3.320,644	3,322,437	3,371,484	3,451,256	3,548,538	3.683,44	3,721,962	3,772.108	3,804	3.801,261	
Retire TY and GR3	3,005,704	3,085,744	3,133,701	3,253,475	3,327,262	3,447,690	3,528.144	3.570,841	3,644,	3,679,430	3.727,4	3,777,51	3,796,	
Retire TY GR3 and BR3	3.106,085	3,183,867	3,223,805	3.322,270	3,410,412	3.536,96	3,598,863	3,651,003	3,730	3,769,082	3.824.484			
Retire TY GR3 and CR4	3,032,856	3,114,122	3,15	3.249,120	3,319,956	3,423,237	3,578,812	3,629,889	3,708.73	3.734,546	3,780,069	3,815.429	3,807.285	3,930,553
Retire TY GR3 CR4 and CR6	3.061.307	3.141.689	3,185,904	3,278,394	3,374,325	3,508,598	3,505,774	3.649.79	3,728,35	3,770,023	3,816,87	3,856,685	3.892,224	4,003,088
Retire TY GR3 CR4 CR6 and 8R	3,062,027	3,159,031	3,266,583	3,429,527	3,439,106	3,500,717	3,504,957	3,649,683	3,746.282	3,825,319	3,871,298	3,933,832	3,932,482	4,058,677
Retire TY GR3 and CR	3,051,132	3,141,549	3,222,890	3.391,323	3,404,135	3,468,989	3,577,55	3,676,5	3,814,243	3,847,400	3,902,64	3,920,448	3,931,460	4,045,348
Retire TY GR3 CR and GH3	3,194,581	3,275,265	3,317.229	3,431,987	3,516,957	3,670,265	3,764,424	3,809,369	3.887,763	3,929,49	3,974,7	4,017,743	4,078,867	4,181,849
Retire TY GR3 CR and GH1	3,239,207	3,292,000	3,356,181	3,444,654	3,487,886	3,549,096	3,720,631	3,820,01	3,872,2	3,936,1	3,981,450	4,047,560	4:078,775	4,194,685
Retire TY GR and CR	3,028,538	3.127,833	3.225.237	3,418,572	3,422,194	3,485,560	3,584.41	3,630,247	3,726,854	3,797,020	3,853,78	3,907,145	3,911,645	032,447
Retire TY GR CR and MC4	3,265,676	3,317,295	3,364.667	3,434,348	3,502,301	3,566,140	3,760,848	3.877,599	3.95	3,97	4,03	4,030,517	4,072,360	
Retire TY GR CR and TC1	3,251,949	3,338,878	3,355,330	3,463,115	3,484,830	3,564,633	3,704,593	3,835,375	3,896,834	3,947,527	3,987,852	4,042.860	4,069.729	4,189,337
Retire TY GR CR and GH4	3,282,974	3,340,850	3,350,207	3,471,962	3,509.465	3,640,933	3,819,709	3,861,468	3,945,790	3,954,963	4,026.707	4,064,01	4,082	4,193,762
Retire TY GR CR and MC3	3.219.568	3,315.564	3,339,807	3,445,296	3,471,313	3.550,533	3.702,909	3,817,250	3,867,042	3,929,428	3,975.008	4,024,159	4,054,231	
Retire TY GR CR and GH2	3,282,509	3.342,502	3,372,967	3,466,107	3.519,584	3,635,374	3,802,638	3,862,531	3,949,795	3.982.537	4,021,330	4,0	4.077,882	4,173,352




 が



















管

	NPVRR Delta at Varying Emergency Energy Cost (\$/MWh)				
					Compliance   Plan
	100	1,000	5,000	10,000	$(16,600)$
TY	4	4	2	1	-1
GR3	-26	-28	-39	-52	-69
BR3	525	530	548	572	603
CR4	-166	-162	-142	-119	-87
CR6	8	8	9	10	11
BR1-2	205	207	213	220	230
CR5	-66	-65	-63	-60	-57
GH3	888	890	898	908	921
GH1	752	754	766	781	800
GR4	-96	-96	-95	-95	-94
MC4	803	806	820	837	859
TC1	930	933	949	969	996
GH4	1,100	1,104	1,118	1,137	1,161
MC3	705	708	720	736	756
GH2	1,095	1,098	1,110	1,126	1,146
MC1-2	942	946	965	990	1,022

[^4]
[^0]:    2/ Synthetic natural gas, propane air, coke oven gas, refinery gas, biomass gas, air injected for Btu
    stabilization, and manufactured gas commingled and distributed with natural gas.
    as gas from Canada and Mexico. 5 / Includes any natural gas used in the process of converting natural gas to liquid fuel that is not aclually converted. 6/ Includes any naturai gas converted inta liquid fuel.
    $7 /$ includes consumption of energy by electricity-only and combined heat and power plants whose primary

[^1]:    
    No CO2
    Low CO2
    Mid CO2

[^2]:    
    $\frac{\text { MTP Canital Delta }}{\text { No Retirements }}$

[^3]:    点
    荡

[^4]:    Note: The values above reflect the correction of the landfill cost error identified by Dr. Fisher and the error identified by the Companies' in response to Supplemental Requests for Information of. Rick Clewett, Raymond Barry, Sierra Club and the Natural Resource Defense Council dated

    August 18, 2011, Question No. 8(b). The impact of these errors is insignificant.

